• !!! Внимание !!!

Системно-векторная психология Юрия Бурлана - не для слабонервных и не для слабоумных!

Записаться на тренинг можно ЗДЕСЬ

Ждем вас на тренингах!

Симбиозы, альтруизмы и сообщества в природе

Обсуждаем вопросы околосистемного мышления и организационного характера

Модераторы: Жанна Банщикова, Санберия

Симбиозы, альтруизмы и сообщества в природе

Непрочитанное сообщение Юра Р. » 08 июн 2009, 06:42

Здесь будут некоторые любопытные научно-популярные статьи по теме
Аватара пользователя
Юра Р.

 
Сообщения: 399
Зарегистрирован: 08 фев 2008, 13:37
Город: Sweden, Stockholm

Re: Симбиозы, альтруизмы и сообщества в природе

Непрочитанное сообщение Юра Р. » 08 июн 2009, 06:44

От биохимического сотрудничества – к общему геному

Симбиотические системы, или «сверхорганизмы», занимают в иерархии биосистем промежуточное положение между организмами и экосистемами. Важнейшую роль в функционировании симбиотических систем играет биохимическая интергация – тонкое разделение отдельных этапов обмена веществ между компонентами комплекса. Прогрессивное развитие симбиоза может приводить к интергации даже на уровне геномов, к возникновению общих систем генетической регуляции.

Давно прошли те времена, когда симбиоз – длительное сожительство неродственных организмов, полезное хотя бы одному из них – считался редким явлением. Когда в 70-е годы XIX века было обнаружено, что лишайники представляют собой симбиотические комплексы из грибов и водорослей, это вызвало немалое удивление. Со временем ученый мир устал удивляться подобным вещам. Стало ясно, что симбиоз – не просто очень широко распространенное явление. Это магистральный путь эволюции, без которого прогрессивное развитие жизни на Земле было бы крайне затруднено, если вообще возможно.

В принципе этого следовало ожидать. Для того чтобы выжить и оставить потомство, каждое живое существо должно справиться с множеством разнообразных проблем. Нужно каким-то образом получать из окружающей среды необходимые вещества, а недостающие самостоятельно синтезировать из подручного материала; нужно добывать энергию, необходимую для энергоемких химических и физических процессов; нужно во-время избавляться от отходов жизнедеятельности; находить подходящих партнеров для обмена наследственным материалом; заботиться о потомстве; защищаться от хищников и так далее – и все это в переменчивой, далеко не всегда благоприятной внешней среде. Требования, предъявляемые жизнью к каждому отдельному организму, не только многочисленны и разнообразны – очень часто они еще и противоречивы. Невозможно оптимизировать сложную систему сразу по всем параметрам: чтобы добиться совершенства в чем-то одном, приходится жертвовать другим. Поэтому эволюция – это вечный поиск компромисса, и отсюда следует неизбежная ограниченность возможностей любого отдельно взятого живого существа. Самый простой и эффективный путь преодоления этой ограниченности – симбиоз, то есть кооперация «специалистов разного профиля».

На симбиозе были основаны многие важнейшие ароморфозы (прогрессивные преобразования), из которых упомянем самый значительный – формирование эукариотической (ядерной) клетки, той основы, из которой в дальнейшем развились все высшие формы жизни (животные, растения, грибы). Эукариотическая клетка сформировалась в результате симбиоза нескольких прокариотических (безъядерных) организмов – бактерий и архей. На симбиозе основаны важнейшие функциональные блоки современной биосферы. Так, возможности высших растений – основных производителей органики и кислорода – были бы весьма ограничены без симбиоза с бактериями, способными переводить атмосферный азот в доступную для растений форму, и с некоторыми грибами (микориза), без кооперации с насекомыми-опылителями и позвоночными – распространителями семян. Растительноядные животные – основные потребители производимой растениями органики – не могут эффективно переваривать растительную пищу без помощи разнообразных симбиотических бактерий и одноклеточных эукариот. Самые яркие и богатые жизнью морские экосистемы коралловых рифов невозможны без симбиоза коралловых полипов с одноклеточными водорослями – зооксантеллами. Сообщества различных экзотических, архаичных и экстремальных местообитаний (таких как наземные и подводные горячие источники, выходы метана и сероводорода, соленые лагуны, подземные воды и др.) тоже сплошь и рядом представляют собой сложные симбиотические комплексы микроорганизмов, в которых порой принимают участие и высшие органгизмы.

Большинство живых существ, населяющих планету, в действительности являются «сверхорганизмами» — сложными симбиотическими комплексами. Несмотря на общеизвестность этих фактов, в биологии по-прежнему господствует старый «организмоцентрический» подход. Поэтому новые обзоры и обобщения, связанные с организацией, функционированием, разнообразием и экологической ролью симбиотических систем, не теряют своей актуальности.

Обзорная статья Н.А.Проворова и Е.А.Долгих посвящена одной из важных и обширных групп симбиотических систем, а именно симбиозам, основанным на биохимической кооперации. В таких системах общий метаболизм (обмен веществ) симбиотического комплекса, в первую очередь обмен углерода и азота (C- и N-метаболизм), оказывается тем или иным способом поделен между симбионтами к их общей выгоде. Авторы указывают, что «обобществление путей обмена позволяет партнерам эффективно использовать все доступные источники C и N, что определяет широкое распространение и экологическую значимость этих симбиозов». Рассматриваются три большие группы «биохимических» симбиозов: 1) азотфиксирующие симбиозы, 2) симбиозы гетеротрофов и автотрофов (т.е. потребителей органики с ее производителями) и 3) симбиозы животных с микробами, помогающими усваивать растительную пищу.

1. Азотфиксирующие симбиозы – это кооперация растений с микроорганизмами, способными переводить азот из атмосферы или захороненной в почве органики в доступную для растений форму (аммоний, NH4+). Основная часть биосферного азота содержится в атмосфере в химически инертной молекулярной форме (N2). Восстановление (фиксация) этого азота требует огромного количества энергии. На это способны лишь некоторые бактерии и археи, у которых есть специальные ферменты – нитрогеназы. Дополнительная сложность состоит в том, что нитрогеназы работают только в анаэробных (бескислородных) условиях. Все высшие (эукариотические) организмы, в том числе растения – по определению аэробны, и в этом, возможно, главная причина того, что у высших организмов способность к фиксации азота не встречается. Много азота содержится также в почве в составе органических веществ, но и этот азот для растений недоступен, поскольку у них нет пищеварительных ферментов, необходимых для деструкции этой органики.

Азотфиксирующие симбиозы образуют представители всех типов наземных растений с альфапротеобактериями (ризобиями), цианобактериями и актинобактериями. Наиболее изучен симбиоз бобовых с клубеньковыми бактериями – ризобиями. Ризобии, живущие в специализированных органах (клубеньках), снабжают растение аммонием, взамен получая весь комплекс элементов питания, в первую очередь – углеводы, образуемые в ходе фотосинтеза. Между растительным и бактериальным компонентами симбиотического комплекса сложилась эффективная и гибкая система взаимной координации и регуляции. Например, специальные ферменты растений, работающие только в клубеньках, «заботятся» о том, чтобы концентрация кислорода в центральной части клубенька, где живут ризобии, была как можно ниже (и она там действительно ниже, чем в атмосфере, на 5-6 порядков). Биохимическая и генетическая интеграция симбиотического комплекса доходит даже до того, что активность некоторых растительных генов регулируется бактериальными белками-регуляторами!
Клубеньки с азотфиксирующими бактериями встречаются не только у бобовых, но и у многих других растений. На снимке – клубеньки на корнях ольхи (с сайта http://plant.geoman.ru)
Клубеньки с азотфиксирующими бактериями встречаются не только у бобовых, но и у многих других растений. На снимке – клубеньки на корнях ольхи (с сайта http://plant.geoman.ru)

Важную экологическую роль играет также симбиоз различных растений с азотфиксирующими цианобактериями. В отличие от ризобий, цианобактерии сами способны к фотосинтезу, что несколько упрощает задачу снабжения азотфиксирующих симбионтов необходимой энергией. Симбиотический комплекс водного папоротника Azolla и цианобактерии Anabaena имеет большое сельскохозяйственное значение: заселение рисовых плантаций этим папоротником резко повышает урожайность риса. Не случайно в некоторых районах Юго-Восточной Азии азоллу обожествляют.

Авторы указывают, что эффективность азотфиксации подобных сибмиотических комплексов невысока по сравнению со свободноживущими цианобактериями, и в принципе может быть повышена искусственными методами. Теоретически возможно «научить» фиксировать атмосферный азот даже сами растительные клетки, точнее их органеллы – пластиды, служащие для фотосинтеза и ведущие свое происхождение от симбиотических цианобактерий. Наверное, можно генно-инженерными методами создать пластиды с генами нитрогеназ, которые могли бы работать в темновых условиях (например, в корнях). Конечно, будет очень сложно добиться достаточно низкой концентрации кислорода в растительных клетках, но перспектива выглядит весьма заманчивой, ведь недостаток доступного азота – главный лимитирующий фактор, ограничивающий рост растений. Сняв это ограничение, теоретически можно добиться колоссального увеличения урожайности.

2. Симбиозы автотрофов с гетеротрофами – это кооперация организмов, синтезирующих органику из углекислого газа, с потребителями готовой органики. В роли первых выступают фотосинтезирующие организмы (растения, одноклеточные эукариоты, цианобактерии) или бактерии-хемосинтетики, использующие для фиксации CO2 энергию окисления неорганических веществ (например, сероводорода или метана). В роли вторых выступают животные или грибы. Широко распространены симбиозы с участием грибов – микоризы и лишайники. В случае микоризы грибной компонент получает от растения-хозяина углеводы (глюкозу, фруктозу), а сам берет на себя функцию корневых волосков (которые на микоризных корнях часто не развиваются) и вдобавок снабжает хозяина соединениями азота (аммонием и аминокислотами), которые гриб добывает, разлагая почвенную органику. Лишайники иногда называют «микоризой наоборот», поскольку в этих симбиотических комплексах гриб выступает в роли «хозяина», а фотоситезирующие организмы (одноклеточные водоросли или цианобактерии) – в роли «симбионта». Однако система биохимической интергации у лишайников и микориз во многом сходна. Наибольшего совершенства эта система достигает у трехкомпонентных лишайников, в состав которых входят, помимо гриба-хозяина, специализирующиеся на фотосинтезе зеленые водоросли и специализирующиеся на азотфиксации цианобактерии.

Симбиоз с автотрофами открывает большие возможности для многих водных животных, особенно малоподвижных (кишечнополостных, губок, асцидий, некоторых червей и моллюсков). Такие симбиотические комплексы представляют собой «сверхорганизмы», сочетающие признаки растений и животных (яркий пример – коралловые полипы). Автотрофы не только снабжают хозяина органикой, полученной в результате фото- или хемосинтеза, но и в ряде случаев помогают ему избавляться от конечных продуктов азотного обмена (например, мочевой кислоты или мочевины), которые служат для симбионтов ценным источником азота.

3. Симбиозы животных с микробами, помогающими усваивать растительную пищу. Потребление органики, производимой растениями в ходе фотосинтеза – главная «экологическая роль» животных в биосфере, однако, как это ни парадоксально, сами по себе животные практически не способны справляться с этой задачей. Подавляющее большинство растительноядных животных попросту лишены ферментов для расщепления растительных полимеров (главным из которых является целлюлоза). Поэтому практически все животные-фитофаги – это на самом деле симбиотические комплексы из животного-хозяина и разнообразных бактерий, грибов или простейших (причем в последнем случае симбиотические простейшие зачастую сами имеют бактериальных симбионтов). По мнению авторов, растительноядность изначально была симбиотическим феноменом. Роль симбионтов не сводится к расщеплению растительных полимеров: они могут также утилизировать азотные шлаки хозяина, и синтезировать многие вещества, необходимые хозяину, но отсутствующие в растительной пище. Микробное сообщество, обитающее в пищеварительном тракте термитов, обладает даже способностью к азотфиксации, что позволяет этим насекомым питаться такими несъедобными вещами, как химически чистая целлюлоза. Некоторые биохимические процессы в таких симбиотических системах оказываются весьма причудливым образом распределены между хозяином и симбионтом. Например, комплекс «тли – бактерия Buchnera» синтезирует важнейшее вещество кофермент А совместными усилиями: сначала бактерия синтезирует из пирувата пантотенат (чего не может насекомое), а затем тля синтезирует из пантотената кофермент А (чего не может бактерия). Конечным продуктом пользуются они вместе.

Авторы отмечают ряд общих закономерностей в развитии симбиотических систем, основанных на «биохимической кооперации». Совместное существование позволяет каждому из компонентов симбиотического комплекса отказаться от тех биохимических функций, которые лучше удаются патрнеру, и сосредоточиться на том, что лучше получается у него самого. Например, клубеньковые бактерии занимаются почти исключительно фиксацией азота, переложив заботу обо всем остальном на растение-хозяина. Один из партнеров обычно специализируется на поставке в систему азота, а другой – углерода. Авторы указывают также на зыбкость и относительность грани между мутуалистическими (взаимовыгодными) и антагонистическими симбиозами: сформулировать четкие биохимические критерии для их разграничения в настоящее время не представляется возможным. Например, многие растительно-грибные симбиозы в ходе эволюции могли долго «балансировать» на грани мутуализма и антагонизма, причем преобладающие потоки питательных веществ могли неоднократно менять свое направление. Непосредственный переход паразитизма в мутуализм – сранительно редкое явление (пример – «защитные симбиозы» растений со спорыньевыми грибами, в которых исходно паразитический гриб стал защищать растение от растительноядных животных путем синтеза токсичных веществ). В большинстве случаев симбиотические системы развиваются из фрагментов экосистем. В частности, симбиозы, основанные на биохимической кооперации, в большинстве случаев развиваются из «синтрофических консорций», то есть кооперативных объединений свободноживущих организмов, соместно утилизирующих какой-то ресурс, или из фрагментов «трофической пирамиды» (симбиозы производителей органики с ее потребителями). Особый и весьма удивительный случай связи между трофической цепью и биохимическим симбиозом представляет морской моллюск Elysia viridis, питающийся водорослью Codium fragile. Этот моллюск ухитряется переселять хлоропласты съеденных водорослей в свои собственные клетки и долгое время сохранять их там живыми, приобретая таким образом способность к фотосинтезу. Настоящий гибрид животного и растения! Главным отличием симбиотической системы от биоценоза является существование у первых общих биохимических путей, а не только механического переноса питательных веществ между организмами. Это сокращает потери и позволяет добиться максимальной эффективности использования ресурсов.
Аватара пользователя
Юра Р.

 
Сообщения: 399
Зарегистрирован: 08 фев 2008, 13:37
Город: Sweden, Stockholm

Re: Симбиозы, альтруизмы и сообщества в природе

Непрочитанное сообщение Юра Р. » 08 июн 2009, 06:50

Эгоизм и альтруизм нейрона



Анохин Константин Владимирович - член-корреспондент РАМН, профессор, доктор медицинских наук, руководитель отдела системогенеза института нормальной физиологии им.П.К.Анохина РАМН

Александров Юрий Иосифович – профессор, доктор психологических наук, руководитель лаборатории нейрональных основ психики им. В.Б.Швыркова института психологии РАН

Александр Гордон: …Звучит так, как будто нейрон - это некий отдельный живой организм, который обладает индивидуальностью. Тем не менее, мы знаем, что это всего-навсего («всего-навсего» в кавычках, конечно) клетка головного мозга. В чем подвох такого названия?

Константин Анохин: Мы хотим поговорить в этой передаче о нейроне, как о клетке, имеющей свою "внутреннюю жизнь" и свои собственные "интересы". Мы хотим обсудить то, по каким принципам работает одна такая клетка и как работают коллективы из таких нервных клеток. То есть как, в конечном счете, работает целый мозг.

Для того, чтобы серьезно обсуждать эту тему, нам нужно найти такой мост, который, с одной стороны, начинался бы от биологии отдельной нервной клетки, а с другой стороны, не терял бы ее места в функциях целого мозга, в осуществлении мозгом психических процессов.

В науках о мозге такой экспериментальный феномен известен. Он получил название "поведенческой" или "когнитивной" специализации нервных клеток.

Этот феномен состоит в том, что клетки в мозге, также как и люди в человеческом сообществе, имеют разные профессии. Представьте себе например, что в некоей стране возникла какая-то глобальная проблема, скажем разразилась война. Даже в такой критической ситуации не все люди, живущие в этой стране, станут заниматься решением этой проблемы. А те кто станут, будут делать это в соответствии со своими навыками, профессиями. Нейроны также имеют такие профессии в решении задач целого организма. Это было впервые обнаружено, когда удалось зарегистрировать активность отдельных нервных клеток тонкими электродами в мозге у бодрствующих животных и у человека во время нейрохирургических операций.

И мы хотели начать с короткого видеофрагмента, где показано как это выглядит в реальном эксперименте.

Юрий Александров: Вы сейчас увидите пример того, как с помощью стеклянных электродов, которые вводятся в мозг животного, регистрируется активность отдельных клеток - нейронов во время осуществления этим животным инструментального пищедобывательного поведения. Вы увидите как кролик, свободно передвигаясь в экспериментальной камере, нажимает на педаль. При нажатии на эту педаль ему автоматически подается кормушка, в которой находится порция пищи. В камере есть две педали и две кормушки. При нажатии на педаль, расположенную с одной стороны камеры, с левой, подается левая кормушка. При нажатии на педаль, которая справа, подается правая кормушка. И последнее, что надо сказать перед тем, как вы этот фрагмент увидите, что вы услышите как работает мозг. Вы услышите импульсацию отдельной клетки мозга. Нейрон разряжается электрическими импульсами. И каждый из этих импульсов звучит потому, что мы подаем их после усиления на динамик. Когда нейрон активируется, т.е. сразу, за короткое время дает много импульсов, которые называются импульсной "пачкой", вы будете слышать характерный треск, соответствующий появлению пачки.

Давайте посмотрим. Вы видите, как кролик подходит к педали и при этом нейрон активируется. Слышите? Это активация в поведенческом акте подхода к педали. И она появляется только в этом поведенческом акте. Когда кролик подходит к другой педали, расположенной у противоположной стенки экспериментальной камеры, активации нет. На следующем фрагменте, который вы сейчас увидите, та же экспериментальная камера, но в ней вместо двух педалей расположены два кольца. Регистрируется активность другого нейрона. Когда животное подходит к кольцу, чтобы его дернуть, нейрон активируется.

К.А. Дернув за кольцо, кролик получает корм в кормушке.

Ю.А. Слышите, активация данного нейрона четко связана с актом подхода к кольцу. Сейчас вы увидите как животное перейдет на другую сторону экспериментальной камеры и там активации не будет. Активация наблюдается только на одной стороны камеры и только в одном поведенческом акте. Сейчас будет, я надеюсь, этот переход.

К.А. А кролик этому поведению обучался. То есть, это часть его индивидуального, присущего только ему субъективного опыта. Который, как мы видим по работе нейронов, организован очень избирательно. Могло бы показаться, какая разница, что два кольца, все равно это один и тот же объект. Но нервные клетки мозга кролика показывают, что для животного это не так.

Ю.А. Сейчас Костя очень важную вещь сказал. Основываясь на данных наблюдения за активностью нейронов, мы можем понять на какие «куски» делят мир животные. Как бы посмотреть глазами животного на мир. Заметьте, что если сравнить данные, полученные при анализе активности нейронов животных разного вида, можно выяснить чем различаются их миры.

А.Г. А сейчас он у другого кольца. И никакой активации.

Ю.А. Активации нет, есть лишь одиночные, редкие разряды, которые называются фоновыми. Теперь, пожалуйста, следующую картинку. На этой картинке я быстро покажу как выглядит импульсация нейрона, которую вы только что слышали, при специальной статистической обработке. Видна активация нейрона. Эта активация видна на том фрагменте, где написано «правая сторона». Этот нейрон активируется, когда животное подходит и нажимает на педаль, расположенную у правой стенки экспериментальной камеры (рис. 1).

А.Г. То есть, мы сейчас видим то, что слышали.

Ю.А. А с левой стороны камеры активации нет. Кроме того видно, что когда при регистрации одного и того же нейрона педаль заменили на кольцо, то при подходе к кольцу и его потягивании активации нет. Опять поставили педаль вместо кольца, и активация вновь появилась. Активация здесь выглядит как черный холмик.

А.Г. То есть, этот нейрон отвечает только за педаль с правой стороны.

Ю.А. Верно, он отвечает, грубо говоря, за педаль с правой стороны. И следующую картинку, пожалуйста (рис. 2). На ней демонстрируется нейрон который отвечает за кольцо с левой стороны.

А.Г. И на педаль не реагирует.

Ю.А. С правой стороны у этого нейрона активации нет, а с левой стороны он активен, когда педаль заменили на кольцо. Затем, видите, красная надпись – педаль. Активации нет. А потом опять ставят кольцо и появляется активация. Черные черточки - это как раз те разряды нейрона, которые мы слышали при демонстрации видеофильма. А теперь может быть рассказать о подобных данных существующих?

К.А. Я бы еще только добавил, что хотя мы каждый раз видим лишь один нейрон, но вообще-то говоря, это не один нейрон в мозге ведет себя таким образом. Всегда существует группа, команда нейронов, разбросанных по разным структурам мозга, которые будут практически неотличимы по данным такой регистрации. Одни будут нейронами левой педали, другие правой педали. Одни одной кормушки, другие другой кормушки.

А.Г. То есть группа клеток отвечает за это.

К.А. Да, целая команда. Поэтому, когда мы видим одну такую клетку, то знаем, что на самом деле в мозге работает целая система таких клеток. И в следующий раз в мозге этого животного мы найдем другую специализированную таким же образом нервную клетку.

Ю.А. Мы считаем, что регистрируя импульсы одной клетки, мы можем судить о работе группы клеток, выполняющих сходную роль в обеспечении поведения. То есть, активация одной клетки является показателем работы целой группы.

К.А. Одна, она не могла бы осуществить это поведение.

Ю.А. Я бы хотел еще добавить, что данные, которые я показывал, получены в нашей лаборатории Р.Г. Аверкиным, Ю.В. Гринченко и А.А. Созиновым.

К.А. А вообще подобных данных очень много. Они показывают, что мозг у самых разных организмов, от беспозвоночных до человека, работает по этому принципу. И вы сейчас услышали, как "разговаривают" эти нейроны.

Это вообще очень захватывающее ощущение, оказаться свидетелем того, как нейроны мозга работают в поведении. И в 70-х годах прошлого века многие нейрофизиологи увлеклись исследованиями активности клеток в бодрствующем мозге. Джон Рэнк-младший (J.Ranck) нашел, например, нейроны "зеленого крокодильчика" [1]. Он регистрировал нейроны в мозге у крысы, которую он пускал в лабиринт, где находились разные предметы. Была там и игрушка маленького зеленого крокодильчика. И он нашел в мозге нейроны, специализированные только относительно контактов крысы с этой игрушкой. А примерно в это же время в 1971-м году О'Киф (O'Keefe) и Достровский (Dostrovsky) регистрировали нейроны у крыс в структуре мозга, которая называется гиппокампом. Выпуская животных в открытую арену и они обнаружили, что некоторые нейроны работают в лишь определенных местах пространства [2]. Причем, не важно как движется животное через это место. На следующем рисунке показан один из таких нейронов и его разряды при передвижении крысы по арене (рис. 3) [3]. Внизу, на левой половине рисунка (Path 1) траектория передвижения животного идет сверху вниз и красными точками показано когда именно работает нейрон. Он работает только в одном месте. В другой раз, как показано на правом рисунке (Path 2), животное проходит через это же место в совершенно ином направлении. Но когда оно туда попадает, этот нейрон опять начинает разряжаться. Более того, экспериментатор может даже взять животное и пронести рукой над этим местом. И этот нейрон будет снова работать.


Позже выяснилось, что животное ориентируется по неким окружающим признакам в среде, например по обстановке комнаты, где расположена арена. И если окружающие арену ориентиры повернуть, то, хотя сама арена никак не поменяется, места работы нейронов в арене сдвинутся вслед за поворотом …

А.Г. Они привязанны к ориентирам.

К.А. Да. И поэтому О'Киф написал с Линн Надел (Lynn Nadel) в 1978-м году нашумевшую книгу «Гиппокам, как когнитивная карта» ("The hippocampus as a cognitive map"), обосновывая в ней, что эти специализированные нейроны в совокупности образуют в мозге животных, в том числе и человека, пространственную когнитивную карту [4].

Вот еще несколько примеров поведенческих специализаций нейронов. В коре головного мозга у обезьян существуют нейроны, которые избирательно активируются при показе им фотографий других обезьян. На следующем рисунке из работы американского нейрофизиолога Чарльза Гросса (Charles Gross) и соавторов [5] полоской отмечен момент, когда обезьяне показывали фотографию другой обезьяны (рис. 4). Вы видите, что отображенный на рисунке нейрон при этом активируется. А если исказить изображение, или заслонить существенные для социальных коммуникаций элементы лица, такие как рот, то активность этого специализированного нейрона будет гораздо меньше. На другой половине рисунка можно также увидеть, что этот нейрон (на самом деле не он один, а целая команда к которой он принадлежит) обладает способностью к весьма сложной когнитивной категоризации. Для него самый сильный объект, на который он активируется, это обезьяна. Но фотография бородатого человек тоже вызывает его активность. Однако показ другой части тела человека, руки, не вызывает. То есть этот нейрон, или вернее система, в которую он входит, "классифицирует" объекты внешнего мира в соответствии с их сложными биологическими признаками.


"Нейроны лиц" есть не только у обезьян на лица обезьян. Есть они, например, и у овец на "лица" овец. Это известные опыты английских нейрофизиологов Кендрика и Болдуина (K.Kendrick, B.Baldwin) [6]. Они показывали овцам фотографии либо других овец, либо человека и собаки (рис 5). И на верхнем графике видно, что есть группы нейронов, которые активируются при показе фотографий один, два, три, четыре, пять, шесть. Это овцы и бараны. Средний рисунок, это особая фотография овец, именно той породы, в стаде с которыми жили экспериментальные овцы. И есть нервные клетки, активирующиеся только при показе этих фотографий. И, наконец, есть нейроны, которых "не интересуют" фотографии овец, но они активируются, когда показывают фотографии человека и пастушьей собаки, причем они помещают их в одну категорию. Для этих нервных клеток пастушья собака и человек являются, видимо, биологически чем-то одним и тем же.
Наверху на этом же слайде показана картинка овцы анфас и видно, что когда овца с фотографии прямо смотрит на экспериментальную овцу, то активность таких специализированных нейронов выше всего. Когда же овца на фотографии "отворачивается", и показана в профиль или с затылка, а это социально менее значимая ситуация, то эти нейроны не так активны.

Такие же "нейроны лиц" есть и у человека. Их обнаруживают в мозге людей во время нейрохирургических операций, требующих вживления человеку тонких микроэлектродов, с помощью которых можно попутно регистрировать активность нервных клеток.
И вы здесь видите как работает нейрон в мозге человека, когда ему показывают фотографию лица Била Клинтона (рис. 5). Видно что данный нейрон активируется избирательно при появлении этого лица, то есть он "узнает" Била Клинтона [7].

В действительности же таких специализаций существует огромное количество и на следующем рисунке из работы группы Кристофа Коха (Сhristof Koch) из США [8] видно, что человеку показывали самые разные категории объектов – лица, предметы, сцены, автомобили, животных, фракталы и так далее (рис. 6). И для примера на правой части картинки показан нейрон, который работает только когда человек видит животных. А во всех остальных случаях нет превышения его активности над фоном. Зато этот нейрон, как видно из нижней правой картинки, активируется когда показывают самых разных животных - льва, змею, медведя, рыбу и так далее. Для данного нейрона, по неким, неизвестным нам признакам, это все одно и то же.

Такие специализированные нейроны в нейрофизиологии обозначают разными терминами. Одно из названий предложил известный польский нейрофизиолог Джерси Конорский (Jerzy Konorski). Еще в 60-е годы 20 века у него была концепция, что существуют нейроны, которые должны отвечать за распознавание и высшие когнитивные функции [9]. Он назвал их "гностическими" нейронами . По его мнению такие нейроны должны, как видно из его рисунка, распознавать самые разные вещи, объекты, лица, почерки и так далее (рис. 7).


Другое название, которое появилось у этих нейронов - «нейроны бабушки». Это происходит из шутливой истории, рассказанной в 1969 году на лекции в M.I.T. известным американским нейрофизиологом Джерри Летвиным (Jerry Lettvin). Если мозг человека состоит из специализированных нейронов и они кодируют уникальные свойства различных объектов, то, в принципе, где-то в мозге должен быть нейрон, с помощью которого мы узнаем и помним свою бабушку. То есть "нейрон бабушки". И это символическое название тоже существует в нейрофизиологической литературе [10].

А.Г. Простите, возникает вот какой вопрос. Нейрон в процессе своей жизни может поменять профессию?

К.А. Этот вопрос предусмотрен в плане нашего обсуждения.

А.Г. Понял. Хорошо.

Ю.А. Может тогда мы к нему и переходим - что это такое – работа нейронов, откуда берется избирательность их активаций. Один из виднейших нейрофизиологов 20-го века Вернон Маунткастл (Vernon Mountcastle) лет 15 назад красиво и точно сформулировал: "Эра функциональной локализации сменилась эрой функциональной специализации". Это означает что уже довольно давно многим людям было ясно, что нейроны специализированы. С этим вообще мало кто спорит. Однако главный вопрос – специализированы относительно чего? Костя сейчас перечислил много всего разного, включая зеленого крокодила. А если взять зеленую муху? А если взять маленького розового медведя? А если взять самого экспериментатора? И так далее, и так далее.

И вообще, когда смотришь современные работы, возникает впечатление, что нейроны могут быть специализированы относительно чего угодно. Относительно любой концепции, которая существует в голове у ученого, который регистрирует импульсацию нейрона животного или активность отдельных мозговых структур при картировании мозга человека. Если следовать логике упомянутых работ, выходит, что нейроны могут быть специализированы относительно эмоций, относительно сознания, относительно двигательных программ, относительно переработки сенсорной информации, относительно зеленого крокодила, относительно романтической любви, относительно чего хотите. Хотите - относительно патриотизма. Такой анализ показывает что вообще, по всей видимости, это совершенно произвольная классификация. Активации нейронов явно с связаны с поведением, их специализация обнаруживается во многих экспериментах. Но все-таки, явно неверен подход, в соответствии с которым нейрон может оказаться специализирован относительно любой придуманной концепции. И вот теперь, пожалуйста, следующий рисунок. На этой фотографии Вячеслав Борисович Швырков (рис. 8). Я более талантливого человека не встречал.

К.А. И я тоже.

Ю.А. Швырков разработал представление о специализации нейронов, на котором, собственно, мы и основываемся. Это представление о системной специализации нейронов [11, 12]. Нейроны специализированы поведенчески или системно. То есть, они специализированы не относительно каких-то вымышленных функций, которых можно набрать сколько угодно, читая оглавления учебников по психологии и физиологии или художественную литературу. Нейроны специализированы (может быть это скучнее, но зато - правда) относительно систем, направленных на достижение тех или иных результатов поведения. Разного поведения. Поэтому и специализации – разные.

Теперь возникает вопрос: Откуда берется эта специализация, что это такое? И кто заставляет нейроны работать вместе (мы уже говорили, что активирующийся нейрон представляет целую группу), чтобы достичь какого-то поведенческого результата? Неужели мой нейрон знает о том, что мне необходимо взять стакан воды или сорвать цветок?

Для того, чтобы подойти к ответу на этот вопрос, я зачитаю замечательную цитату из книги Чарльза Шеррингтона (Charles Sherrington). Это лауреат Нобелевской премии и работа его, из которой взята цитата, была опубликована более полувека назад [13]. Цитата следующая: «Утверждение, что из клеток, составляющих нас, каждая является индивидуально эгоцентричной жизнью не просто фраза. Это не просто удобный способ описания. Клетка, как компонент тела, не только визуально ограниченный модуль, это отдельная жизнь, сосредоточенная на себе. Она живет собственной жизнью».

Шеррингтон говорит здесь о том, что клетка – эгоистичный организм, у которого есть собственные потребности и собственная жизнь. И она, эта клетка, должна обеспечивать свою жизнь. Пожалуйста, следующий рисунок (рис. 9). В основе представлений о системной специализации лежит, в общем, следующее. Отдельный организм, который вы видите справа, над ним написано «активность» - это человек. Он совершает действие. Действие направлено на достижение определенного результата. В данном случае результат - взятие яблока. А в голове у этого человека нейроны, обеспечивающие данное и другие действия. Внизу довольно сложный рисунок одного из этих нейронов. Этот рисунок демонстрирует, что нейрон выступает, как «организм» в организме. Этот нейрон тоже совершает некое «действие» - разряжается импульсами - для того, чтобы получить некий результат. Теперь вопрос: а что это за результат нейрона? Что это за результат у человека или у кролика понятно. Взять стакан воды, найти морковку и так далее. А у нейрона?

Нейрон, как мы только что выяснили, это живая эгоцентричная жизнь. Он должен обеспечивать свой метаболизм. Свои процессы жизнедеятельности. Откуда может нейрон взять вещества, которые ему нужны для его жизнедеятельности? Из его микросреды. Кто ему в эту микросреду поставляет вещества? Эти вещества ему в среду поставляются из кровяного русла, через церебро-спинальную жидкость и от других клеток.


На схеме видно, что у этого нейрона есть на мембране рецепторы и когда метаболиты соединяются с рецепторами, то течение метаболических процессов в нейроне меняется и он может осуществить те или иные жизненно важные функции. Кроме того, есть и такие метаболиты, которые могут проникать внутрь клетки, также влияя на метаболизм и включаясь в метаболические циклы. Следовательно, в определенном смысле активность отдельной клетки построена также, как и активность целого живого организма. Активация клетки это не реакция на какой-то стимул, на приход к ней разрядов других клеток. Нейрон посылает по разветвлениям своего аксона импульсы, чтобы изменить свою микросреду и получить те метаболиты, которые ему необходимы. То есть, разрядная деятельность нейрона не реактивна, а активна и направлена в будущее.

Далее. Отдельно живущая клетка, одноклеточный организм, ведет себя следующим образом. Если этой клетке нужен какой-то метаболит для того, чтобы поддержать свою жизнедеятельность, она может сместиться в область повышенной концентрации этого метаболита и его поглотить. Нейрон, как и другие клетки организма, не может обеспечить свои потребности, изменяя среду, в одиночку. Значит отличие нейрона, во многом похожего на эту отдельную клетку (когда ему нужны метаболиты, он тоже действует, чтобы этот метаболит получить), состоит в том, что он, как и все остальные клетки организма, может обеспечить свои эгоистические потребности исключительно синхронизируясь, объединяясь с другими эгоистами, которым что-то надо.
И вот теперь смотрите что получается. Масса эгоистов, активных вместе, работают, разряжаются импульсами. Мы смотрим на организм, например мой, в котором работает масса эгоистов. Что мы видим, наблюдая за мной? Что когда они работают, я делаю что-то, совершаю тот или иной поведенческий акт. Вот я достиг результата. Мои нейроны не знают ни про эту указку, которую я беру, ни про мою руку, ничего. Но когда я достигаю этот поведенческий результат – взятие указки, то в микросреде каждого из нейронов появляются те метаболиты, которые им нужны для жизнедеятельности. За это они и работают. За удовлетворение их эгоистических потребностей. Объединение этих потребностей отельных клеток в систему извне выглядит как совершение нами целенаправленного поведенческого акта.

Отсюда вопрос, я так понимаю для нас центральный, фантастически важный и наиболее нас интересующий: а как это объединение происходит? Каким образом эгоисты объединяются в системы, то есть каким образом эти системы формируются? Этот процесс формирования новых систем– есть процесс согласования эгоистов, работающих вместе, который для нас как целых организмов означает возможность достижения результатов новых поведенческих актов. Процесс формирования новых систем называется системогенезом.

Формирование новых систем обеспечивается функциональными и морфологическими модификациями нейронов. В основе морфологических изменений лежит активация генетического аппарата нервных клеток и здесь Костя является одним из крупнейших специалистов.

К.А. Прежде чем мы перейдем к генам я бы хотел немного дополнить то, что говорил Юра. Одно из замечательных открытий, сделанных Швырковым, заключалось в том, что активность нейронов в бодрствующем мозге во время поведения связана не с наносимыми организму стимулами, а с результатами и целями поведения. Раньше активность нейронов в мозге изучали в основном после предъявления организму стимулов и строили всю логику работы мозга от стимула к реакции. Вячеслав Борисович, вместе со своими сотрудниками обнаружил, что в ситуациях активного поведения адекватного усреднения работы нейрона относительно стимулов не получается. Стимулом может быть, например, дача условного сигнала, скажем звука. А дальше животное должно подбежать к кормушке за пищей. И оказалось, что активность нейронов в мозге бодрствующего животного определяется не предшествующим стимулом, а тем куда движется животное и что будет в конце поведенческого акта. И когда такая команда одновременно работающих "эгоистов" достигает результата, то эта активность прекращается. То есть активации нейронов в поведении, как говорил Швырков, не "постстимульные", а "предрезультатные".

А.Г. Кстати, я обратил внимание, что на том же самом видео с кроликом пик активности приходился не на тот момент, когда он тянет кольцо, а когда он только подходил к нему.

Ю.А. Да, совершенно верно. В рассматриваемом нами поведении много поведенческих актов, сменяющих друг друга. И там не только само потягивание, но подход к кольцу. Поскольку мы его учили сначала подходить к кольцу, то для него результат не только захват кольца, но и подход к нему.

К.А. Потому что на определенной стадии обучения кролику достаточно было отойти от кормушки в сторону кольца, чтобы получить следующую порцию пищи.

Ю.А. Можно я теперь добавлю к тому, что сказал Костя? Я бы хотел показать здесь данные, полученные в лаборатории Сэма Дедвайлера ((Sam Deadwyler), в Соединенных Штатах. Это совершенно замечательная иллюстрация, которая иллюстрирует соответствие динамики активности нейронов динамике поведения животного. Здесь показано как работают нейроны у крыс-кокаинисток. Эта крыса приучена к потреблению кокаина и она кокаинозависима. Ей в вену введен катетер и в него поступает кокаин каждый раз, когда крыса жмет на педаль. На рисунке вы видите слово «кокаин», а под ним черта. Вот эта черта и обозначает интервал, когда в вену поступает кокаин. Как только крыса получает кокаин, посмотрите в разрядной деятельности клетки появляется пауза. Пауза означает, что результат достигнут и на уровне отдельного нейрона достижение результата выступает как прекращение активации, связанной с достижением результата. Дальше посмотрите. Постепенно частота активности нейрона нарастает. Она нарастает, потом…

К.А. Цикл как бы замыкается.

Ю.А. Да и активность становится очень выраженной, то есть ее частоты сильно увеличивается. И как только она становится очень выраженной, активность этого нейрона, то есть велика потребность в кокаине, то, наблюдая за поведением целого животного, мы видим, как крыса бежит, нажимает на педаль и получает кокаин. Как только она получает кокаин, активность нейрона обрывается. То есть, эта активность, как совершенно точно заметил Костя только что, является не постстимульной, а предрезультатной. Эта активность, направлена на достижение определенного результата, коим она обрывается. Следовательно, для целого организма достижение результата поведения означает прекращение поведения. А для отдельного нейрона достижение результата означает прекращение его активности. И если для целого организма результат - схватывание чего-нибудь, получение пищи и так далее, то для отдельного нейрона это получение нужных метаболитов.

А.Г. А по-разному специализированный нейроны не могут входить в конфликт между собой? Одному хочется одного, другому – другое.

Ю.А. Могут. Я думаю, что могут. У нас есть задумки проведения экспериментов и с конфликтами, и с «вытеснениями». Предположим сформировано некое поведение, которое позже запрещено. Нейроны, специализированные относительно сформированного поведения есть, у них существуют метаболические потребности. Они могут их удовлетворить только совершив поведенческий акт, а этот поведенческий акт запрещен. Что делают эти нейроны, как они выживают? Каким образом они могут выжить, если они могут получить метаболиты только при условии реализации организмом определенного поведения, которое мы запретили? Это очень интересный вопрос.

К.А. Но все-таки перейдем теперь к генам. К генам нам надо обратиться потому что мы, в частности знаем, что когда такие специализации формируются, то они приобретаются очень устойчиво и надолго.

Вы спрашивали, может ли нейрон переучиться. Ясно, по крайней мере, что если нейроны и переучивать, то это очень сложный и трудный процесс. Если специализации нейронов сформировались, то они хранятся месяцами и даже годами. Когда животных чему-либо усиленно обучают, то можно увидеть, что приобретенные специализации нейронов сохраняются даже под наркозом. Это было обнаружено в частности в опытах японского нейрофизиолога Танаки (Tanaka), когда обезьянам под наркозом предъявляли совершенно невероятные для эволюционной экологии изображения - фракталы, которые искусственно генерировались компьютером. Но в жизни данной обезьяны эти фракталы служили для нее этапными результатами в ее пищедобывательном поведении. После того, как обезьяна узнавала на их экране компьютера, она могла нажать на педаль и получить пищу. Оказалось, что нейроны сохраняют свою специализацию с связи с попадающими на сетчатку изображениями фрактальных картинок даже если животное находится во сне, под наркозом [14]. И поэтому ясно, что такое обучение должно уходить глубоко, в молекулярные перестройки клеток, в изменение работы генов.

Ю.А. Я хотел бы сделать ясной эту позицию. С нашей точки зрения специализации пожизненны. И это принципиально важная вещь, что они пожизненны. Конечно, вы можете ту систему, по отношению к которой данный нейрон был специализирован, использовать в каком-то другом поведении. И если вы регистрируете активность этого нейрона, у вас возникнет впечатление, что он умеет теперь делать другое, не то, что делал. На самом же деле нейрон принадлежит той же системе, что и раньше, но возможности использования этой системы расширились.

Это имеет, кстати говоря, отношение к проблеме аддиктивного поведения. Например, к проблеме алкоголизма. Почему возникают рецидивы алкоголизма даже после очень длительной абстиненции, когда больной человек в течение длительного периода не принимал алкоголь. Потому что одним из механизмов образования зависимости является формирование специализаций нейронов относительно алкоголь добывательного поведения при хронической алкоголизации. Потом, по прошествии многих лет отказа от алкоголя, человек сформировал массу других поведений. Наформировал множество новых специализаций. Но ранее сформированные «алкогольспецифические» специализации у него остались. Эти нейроны, возможно, и убить нельзя и переучить их нельзя. Вот в чем проблема.

А.Г. То есть, они могут быть совместителями, но при этом первую свою профессию не забывают.

К.А. Есть такое предположение, грубо говоря.

А.Г. И все-таки гены.

К.А. Итак, если это надолго, то работа генов в клетке должна измениться. И мы попробовали соединить вместе два уровня: тот, до которого можно добраться нейрофизиологическими методами, регистрируя активность клеток, и молекулярный, связанный с внутриклеточными механизмами. То есть, дойти до молекулярных основ поведенческой специализации нервных клеток. Также, как это делается для понимания механизмов дифференцировки клеток в эмбриональном развитии, когда мы знаем, что это зависит от генов.

Для этого мы исследовали работу генов, запускающих в клетке долговременные преобразования. Во время жизни нервной клетки, бывают такие ситуации, когда клетка должна что-то запомнить. Мы пока не знаем как определить то, что именно она запоминает каждый раз. Но нам известно, что в тот момент, когда это происходит, в нейроне включаются гены, которые, говоря очень примитивно, запускают долговременное запоминание. Они как бы триггеры, которые говорят: то, что сейчас было, надо запомнить. Нужно перестроить другие гены и белки так, чтобы нервная клетка изменила себя надолго. Некоторое время назад мы нашли такие гены и их работу в мозге можно увидеть, окрашивая клетки антителами к их продуктам.

К сожалению, сегодня пока невозможно регистрировать электрическую активность отдельных клеток мозга во время поведения и одновременно исследовать активность генов в этих же нейронах. Но мы с Юрой придумали такой трюк. Мы взяли для исследования две области коры головного мозга, где мы знаем, что процент специализирующихся при обучении нейронов очень большой и очень маленький. Одна из них это так называемая циргулярная кора, где при обучении специализируется до 30 процентов нейронов. Когда, например, животное учится нажимать на педаль, чтобы получать пищу, то это "нейроны педали", которые вы видели на видео. А в моторной области коры доля таких специализирующихся нейронов очень маленькая, всего несколько процентов. В нашем эксперименте Владимир Гаврилов и Юрий Гринченко регистрировали нейроны из этих областей мозга обученных крыс, когда они добывали пищу, нажимая на педаль. И измерили число специализированных относительно нажатия на педаль нейронов (рис 10).

А затем Ольга Сварник взяла другую группу животных, которые учились этому же поведению нажатия на педаль, и посмотрела как в их мозге работает ген-маркер долговременных изменений. И на следующем рисунке показаны, срезы мозга крыс, окрашенные антителами к белковому продукту этого гена с-fos (рис. 11).


Это срезы из той же области мозга животных, где в первой серии экспериментов проходил регистрирующий электрод. И вы можете увидеть, сколько нейронов активируется в этих двух областях, когда животное учится нажимать на педаль. Видите, в цингулярной коре это целых 34 процента, а в моторной коре таких нейронов почти нет, всего лишь три процента [15].

Получается, что в тех областях мозга, где мы находим много поведенчески специализированных нейронов, при обучении включаются гены, запускающие запоминание. Таким образом, мы провели как бы мост между одним и тем же феноменом на нейрофизиологическом и молекулярном уровне. И теперь, опираясь на эти известные гены, мы можем изучать вопрос что именно запускает этот процесс в геноме. И задавать вопрос почему эта, а не другая клетка, включила эти гены в момент обучения.
Кроме того, мы теперь можем увидеть то, что нельзя было изучать, регистрируя только одну или несколько клеток. Мы можем увидеть картину обучения во всем мозге. Делая трехмерную реконструкцию активации генов в мозге при обучении, мы можем видеть как работают целые системы специализирующихся нейронов (рис. 12). То есть, это исследовательский путь от генов к специализации нейронов при обучении, а от специализации отдельных нейронов к законам объединения их в системы, к системогенезу.

Ю.А. Но вот еще, что мы должны обязательно сказать. Ведь в названии у нас не только «эгоизм», но и «альтруизм». Что это за альтруизм у нейрона и откуда он берется.

Следующая иллюстрация, пожалуйста (рис. 13). На этой схеме изображен нейрон, «принимающий решение» жить или умереть. Когда происходит рассогласование между потребностями этого нейрона и состоянием его микросреды, то нейрон активируется вместе с другими клетками – организм совершает поведенческий акт, а нейрон получает необходимые метаболиты. Но когда в опыте индивида нет такого способа согласования активности клеток в системе, который мог бы устранить подобное рассогласование, и, следовательно, в памяти нет соответствующего поведенческого акта, то активируются ранние гены, потом активируются поздние гены, клетка модифицируется и происходит то, что называется системогенезом. Образуется новая система – новый способ согласования клеток, новый поведенческий акт. Однако бывает и другой вариант развития событий. Когда активация ранних генов затягивается. Когда не удается решить проблему. Довольно часто это бывает в патологии, например при нарушении целостности ткани. Но, вероятно, может быть и в норме, в ситуации, когда индивид долго не может найтти выход из положения, достичь результат поведения. Итак, в случае возникновения стойкого рассогласования между “потребностями” нейрона и его микросредой и при невозможности устранить рассогласование в рамках имеющегося опыта, как в норме, так и в патологии у клетки имеется следующая альтернатива: измениться, вовлекаясь в формирование новой системы или умереть.

К.А. Нервная система ищет решение, генерирует все новые пробы.

Ю.А. И прерванные стрелочки показывают, что это длительная активация ранних генов. Если не удается найти решение, то активируются гены смерти. Активируются гены смерти и запускается так называемый процесс программирования клеточной гибели. Надо подчеркнуть, что альтернатива, о которой идет речь - не «системогенез или смерть», а два пути обеспечения системогенеза: модификация нейрона или его гибель. Блокирование любого из них нарушает системогенетические процессы. Таким образом, здесь подчеркивается именно позитивный, в общеорганизменном плане, аспект гибели нейронов. Фатальный для отдельных клеток исход - гибель – можно представить себе в качестве неизбежной платы за возможность осуществления успешного системогенеза на протяжении всего индивидуального развития. Предполагается, что элиминация нейронов вносит вклад в процесс формирования новых систем при научении – в системогенез.

А.Г. Самоубийство по сути.

Ю.А. Да, совершенно верно. Это и называется клеточный суицид в литературе. Но, собственно, что я хочу сказать и думаю, что это важно, - это не просто суицид, а он альтруистичный суицид. То есть, клетка принимает решение о том, чтобы убить себя и можно предполагать, что самоубийство - один из способов участия этой клетки в системогенезе. Это устранение своих потребностей из, если хотите, общего «рынка потребностей», упрощение ситуации, когда клетки пытаются организоваться, а потребности нашей альтруистичной клетки не вписываются во вновь создаваемую интеграцию и не могут быть изменены так, чтобы вписывание стало возможным.

Подобный альтруистичный суицид клеток в нервной системе был показан, например, при изучении влияния на нейроны вирусов, которые поражают нервную систему. Когда вирус попадает в нервную клетку, то в ней, в этой нервной клетке, включается аппарат самоубийства. Потому что если клетка успевает себя убить, то вирус в ней не может размножиться. И интересно, что вирусы в ответ на это «придумали» способ предотвращения нейронного суицида: некоторые вирусы научились блокировать аппарат клеточного самоубийства.

И я должен сказать, что для альтруизма клеток многоклеточного организма имеются эволюционные предпосылки. Описана альтруистическая гибель у одноклеточных (амебы Dictyostelium discoideum), которые приносят себя в жертву другим клеткам своего клона, обеспечивая за счет формирования нежизнеспособного стержня, существование временно формирующегося многоклеточного образования. Остальные (около 80 %) клеток превращаются в жизнеспособные споры, составляющие это образование. Клетки нашего организма тоже принадлежат к одному клону. И они также приносят себя в жертву, проявляя в определенном смысле альтруизм для выхода из ситуации, как в норме при научении, так и в патологии, в которой, как и в норме, имеет место системогенез, формирование новых способов выживания.

А.Г. Все. Время закончилось. Только последний вопрос. Ведь нейроны гибнут. И бывает, что эта смерть не естественная. Скажем, повреждение мозга, черепно-мозговая травма.

Ю.А. Это другая вещь. Это не суицид.

А.Г. Я понимаю, но просто в таком случае те нейроны, которые уцелели, и у которых другая специализация, могут взять на себя функцию тех нейронов, которые погибли?

Ю.А. В первую очередь для этой роли может быть подходят вновь появляющиеся нейроны. Сейчас стало известно, что нейроны не только гибнут, но и вновь появляются в мозге у взрослого организма. Показано, что при локальных повреждениях мозга эти вновь появившиеся нейроны мигрируют к очагу повреждения. А вот какие именно клетки они «замещают» – это вопрос. То ли они составляют резерв для последующего системогенеза, для отбора новых клеток при научении. То ли они замещают погибшие. Например, предположим, что была система, к которой принадлежало определенное число клеток. Эти клетки погибли физически. Но не так как я выше рассказывал – при альтруистическом суициде, а некротически, они были непосредственно повреждены. Можно ли их заместить? Для меня, например, это вопрос. Нужен ли новый системогенез для замещения этих клеток? Если нужен, тогда это уже не та система. Может быть, что имеют место оба варианта.

К.А. Здесь очень много интересных вопросов. Но кое-что уже сейчас ясно с нейрогенезом в во взрослом мозге. Во-первых, он протекает в очень небольшом количестве мест в нервной системе млекопитающих. У рыб и птиц эти области гораздо шире. Во вторых ясно, что есть и другой процесс - большой процент новых нейронов гибнет в первые недели после того, как они родились. И было установлено, что в тех ситуациях, когда происходит постоянное обучение и все время формируются новые системы, выживает очень много нейронов. Если же животное лишено возможности образовывать новый опыт, значительная часть вновь рождающихся нейронов гибнет.

Ю.А. То есть, чем больше животное учится, тем больше выживает клеток. Или, скажем, тем меньше умирает.

А.Г. Чем они востребованнее, тем они успешнее.
Аватара пользователя
Юра Р.

 
Сообщения: 399
Зарегистрирован: 08 фев 2008, 13:37
Город: Sweden, Stockholm

Re: Симбиозы, альтруизмы и сообщества в природе

Непрочитанное сообщение Юра Р. » 08 июн 2009, 07:02

Оригинальная статья http://www.galactic.org.ua/Prostranstv/n_kl-4.htm

СОЦИАЛЬНОЕ ПОВЕДЕНИЕ НОРМАЛЬНЫХ КЛЕТОК И АНТИСОЦИАЛЬНОЕ ПОВЕДЕНИЕ ОПУХОЛЕВЫХ КЛЕТОК.
КЛЕТКИ СТРОЯТ ТКАНЬ


Юрий Маркович Васильев, доктор медицинских наук, профессор, член-корреспондент РАН, профессор кафедры вирусологии МГУ, зав. лабораторией Всероссийского онкологического научного центра. Автор 180 научных работ, включая 6 монографий на русском и английском языках.

МИКРОСРЕДА КЛЕТКИ
Поведение клетки в организме определяется средой, непосредственно окружающей эту клетку. Такая микросреда состоит из компонентов трех типов:
а) соседних клеток;
б) внеклеточных поверхностей, с которыми контактирует клетка, например, поверхностей коллагеновых волокон и других волокон, выделяемых клеткой (так называемого внеклеточного матрикса), и
в) жидкой среды: тканевой жидкости, крови и лимфы.
В упрощенных условиях культуры клетки также окружены трехкомпонентной микросредой: жидким компонентом здесь является питательная среда, а среди внеклеточных поверхностей наряду с волокнами матрикса имеется внутренняя поверхность культурального сосуда - подложка культуры. Все поведение нормальной клетки определяется сигналами, получаемыми из микросреды.
В предыдущей статье [5] мы разобрали некоторые механизмы регуляции деления и гибели клеток молекулами жидкого компонента микросреды - факторами роста и гормонами. В этой статье мы рассмотрим реакции клетки на два других компонента микросреды - на контакт с внеклеточным матриксом и поверхностью других клеток. Сложность этих взаимодействий в том, что они двусторонни: при контакте между клетками, разумеется, меняются обе клетки; при контакте с матриксом меняется не только клетка, но и матрикс. В результате множества таких взаимодействий группы клеток обустраивают ту территорию, на которой они живут, строят ткани и органы. Эта деятельность клеток аналогична деятельности людей, обустраивающих свою локальную территорию: дом и участок вокруг дома. При этом и люди и клетки совместно определяют границы между территориями соседей, строят свои дома или заселяют дома, построенные другими, а также организуют связи с ближними и дальними домами.
Изучению механизмов контактных реакций, ведущих к построению тканей (морфогенетических реакций), очень помогает сравнение поведения нормальных и опухолевых клеток. Как мы знаем, у опухолевых клеток реакции на внешние сигналы нарушаются в результате мутаций определенных генов: протоонкогенов и антионкогенов. Рассмотрим нарушения способности к морфогенетическим реакциям, возникающие в результате таких мутаций.

КЛЕТКИ ОБУСТРАИВАЮТ ТЕРРИТОРИЮ КУЛЬТУРЫ
Простейший вариант обустройства своей территории группой клеток - организация многоклеточной структуры, подобной ткани, из изолированных клеток эпителия или соединительной ткани (фибробластов), высаженных в культуру, где клетки прикрепляются ко дну (подложке) сосуда, заполненного жидкой питательной средой. Одной из важных реакций, возникающих при такой организации, являются выработка и выделение специальных белков внеклеточного матрикса. Эти белки прикрепляются ко дну сосуда, а также полимеризуются вокруг клетки в особые нити, например коллагеновые волокна. Фибробласты в культуре, как и в организме, образуют рыхлую сеть таких волокон, окружающих клетки со всех сторон. Эпителиоциты образуют более густую решетку из особых коллагеновых волокон - так называемую базальную мембрану между клеткой и подложкой.
Клетка, коснувшаяся подложки с сорбированными молекулами белков матрикса или волокон матрикса, сделанных ею самой или другими клетками, начинает тут же реагировать на этот контакт, меняя форму и перестраивая цитоскелет (рис. 1). Мы уже разбирали механизмы таких реакций в предыдущих статьях [4].

Повторим коротко суть происходящих при этом процессов.
Центральной реакцией здесь является образование подвижных отростков - псевдоподий, наполненных внутри актиновыми филаментами. Поверхность псевдоподий образует затем специальные структуры - фокальные адгезии, где скопления белков-рецепторов прикрепляют мембрану этой клетки к белкам матрикса и через них к подложке. С внутренней стороны мембраны молекулы тех же рецепторов соединяются с актиновыми филаментами цитоскелета. Сокращения этих натянутых и прикрепленных к матриксу филаментов могут вызвать подтягивание всей клетки к фокальной адгезии. Многократное повторение этих реакций - основа движений клетки по подложке.
Клетки реагируют также на контакт с поверхностью другой клетки. Этот сигнал вызывает две реакции: остановку образования псевдоподий в направлении другой клетки (контактное торможение движений [4] и образование адгезионных структур второго типа (межклеточных адгезий).
Таким образом, комплекс морфогенетических реакций в культуре включает секрецию белков матрикса, образование и сокращение псевдоподий, образование адгезий между мембраной псевдоподий и матриксом и мембранами соседних клеток, а также контактное торможение движений. В результате многократного повторения таких реакций клетки организуются в многоклеточные системы, очень похожие на те ткани, которые те же клетки (эпителиоциты и фибробласты) строят в организме.

Эпителиоциты соединяются друг с другом в пласт из клеток, плотно спаянных адгезиями друг с другом и сидящих на базальной мембране, - организация, очень похожая на однослойный эпителий в организме.
Фибробласты приобретают в культуре вытянутую форму, образование которой зависит от цитоскелетной системы микротрубочек [4]. Межклеточные адгезии у фибробластов в отличие от эпителиоцитов непрочны, они легко рвутся при движениях, и контактирующие клетки отделяются друг от друга. Поэтому фибробласты в культуре образуют систему из параллельно расположенных удлиненных клеток, между которыми располагается густая сеть волокон матрикса. В организме соединительные ткани и родственные им хрящевые и костные ткани построены по тому же типу - из клеток, отделенных друг от друга межклеточным матриксом разного состава (рис. 2). Такую систему можно сравнить с селом, где каждый индивидуум или группа индивидуумов отделен друг от друга большими приусадебными участками (структурами матрикса). Эпителий больше похож на коллектив, где индивидуумы более тесно связаны друг с другом, например на марширующую воинскую часть.
Клетки строят ткань

КОНТАКТНЫЕ РЕАКЦИИ РЕГУЛИРУЮТ РАЗМНОЖЕНИЕ И ГИБЕЛЬ КЛЕТОК
Реакции с матриксом и подложкой не только приводят к построению тканей, но и участвуют в регуляции внутриклеточных процессов, и прежде всего размножения клеток (рис. 3). Нагляднее всего это видно из опытов, демонстрирующих зависимость размножения нормальных фибробластов от их прикрепления ко дну культуры и волокнам матрикса на этом дне (подложке). Когда мы делаем обычную культуру, то взвесь (суспензия) отделенных друг от друга клеток добавляется в питательную среду культурального сосуда, например чашки Петри. Под влиянием силы тяжести клетки взвеси опускаются на дно сосуда, прикрепляются к этому дну и лишь затем начинают размножаться, то есть вступают в митотический цикл [5]. Прикрепление клеток к подложке можно предотвратить, если добавить в среду вязкое вещество (агар или метилцеллюлозу), мешающее клеткам оседать на дно. Клетки остаются взвешенными в таком "студне", размножаться они не начинают. Достаточно, однако, поместить в вязкую среду очень маленькие стеклянные палочки, чтобы клетки, не севшие на дно, но прикрепившиеся к поверхностям таких висящих палочек, немедленно вступили в митотический цикл и образовали через несколько дней колонии клеток вокруг каждой палочки. Очевидно, митотический цикл здесь индуцируется прикреплением клетки к подложке или сходной с ней поверхности палочки.

В отличие от контактов с подложкой контакты с другими клетками, по-видимому, приводят к торможению размножения (рис. 3). Действительно, когда в результате размножения клеток культура становится густой и на ее дне не остается незанятых клетками мест, то эти клетки перестают делиться, то есть выходят из митотического цикла в так называемую фазу покоя Go [5]. Если сделать рану (удалить бритвой со дна сосуда небольшой участок густой культуры), то контактное торможение на краю раны исчезает и клетки начинают мигрировать в рану на свободную подложку. Вскоре такие мигрировавшие клетки начинают в ране активно размножаться и делятся до тех пор, пока не зарастет вся рана, то есть свободная подложка. Эти опыты свидетельствуют о том, что размножение зависит от местной "густоты" населения культуры. Хотя они не доказывают строго, что именно прямые контакты клетка-клетка тормозят размножение, такая возможность представляется очень вероятной.
Контроль размножения с соседними клетками и подложкой в культуре аналогичен процессам, происходящим в организме, Приведем только один пример. Представьте себе царапину, нарушившую целостность эпителия кожи. Клетки эпителия по краю царапины начинают мигрировать на поверхность свободного матрикса и размножаются до тех пор, пока эта поверхность будет полностью закрыта.
Во всех случаях регулируется местное соотношение клеток и территорий, на которых они находятся. Нормальная клетка размножается только тогда, когда у нее есть свободная "площадь для жилья". Благодаря этим регуляциям поддерживается и восстанавливается после повреждений правильная тканевая структура (заживление ран!).

НАРУШЕНИЯ МОРФОГЕНЕТИЧЕСКИХ РЕАКЦИЙ ПРИ ОПУХОЛЕВЫХ ТРАНСФОРМАЦИЯХ
Опыты с культурами показали, что при опухолевых трансформациях эпителиоцитов и фибробластов резко нарушаются все морфогенетические реакции на контакты с другими клетками и подложкой. Такие трансформированные клетки делают меньше матрикса, хуже прикрепляются к матриксу, подложке и другим клеткам. Нарушаются также контактные регуляции размножения. Например, клетки, взвешенные в вязкой среде, продолжают размножаться без прикрепления к подложке. Эти клетки размножаются и в густой культуре независимо от числа соседей. В результате тканевые системы эпителия и соединительной ткани в культуре и организме становятся хуже организованными, а в предельном случае такие системы вообще не образуются, но распадаются на отдельные клетки и группы клеток. В организме такие отделившиеся от ткани клетки начинают двигаться на соседние территории и размножаться там. Например, трансформированные клетки эпителия, отделившись от пласта, начинают мигрировать через дефектную базальную мембрану в окружающую соединительную ткань, а затем проникать в просвет сосудов, откуда они током лимфы или крови могут переноситься в другие органы. Такие крайние изменения способности к морфогенетическим реакциям и построению тканей обусловливают наиболее опасные свойства опухолевых клеток - способность к врастанию в нормальные ткани (инвазия) и к образованию колоний в других органах (метастазирование). Отметим, что способность к инвазии и метастазированию свойственна лишь клеткам опухолей, наиболее резко измененным генетически. Врачи называют такие опухоли злокачественными (рис. 4). Клетки с менее измененными морфогенетическими реакциями образуют доброкачественные опухоли, где имеются различные нарушения организации тканевых структур, но нет инвазии и метастазирования. Анализ генома показал, что клетки злокачественных опухолей человека имеют целую серию мутаций разных онкогенов и антионкогенов, тогда как клетки доброкачественных опухолей обычно имеют меньшее число таких мутаций. Таким образом, степень нарушения морфогенетических реакций и соответственно течение опухоли определяется числом и степенью изменений генома опухолевых клеток, одной мутации для развития рака обычно недостаточно.

МЕХАНИЗМ РЕГУЛЯЦИИ КОНТАКТНЫХ РЕАКЦИЙ
В первой части статьи [5] мы разобрали основы молекулярных механизмов действия специальных сигнальных молекул из жидкой среды, регулирующих размножение клеток. Напомним, что такие молекулы связываются со специальными рецепторами в наружной мембране клетки и активируют эти рецепторы, а те, в свою очередь, активируют цепь промежуточных белков в цитоплазме, что в конце концов приводит к активации синтеза ядерных белков, необходимых для удвоения генома (ДНК) и подготовки деления. Онкогены опухолевых клеток - мутировавшие гены, кодирующие белки разных этапов цепей проведения сигналов. При опухолевых трансформациях онкогены, вызывающие нарушения реакций на гуморальные факторы, индуцируют, как мы видели, и нарушения морфогенетических реакций. Отсюда следует, что многие этапы обеих групп реакций на сигналы контролируют одни и те же белки, в частности специальные ферменты, присоединяющие фосфат к белку (киназы, см. [5]). Конечными этапами цепей активации морфогенетических реакций становятся, вероятно, какие-то белки цитоскелета, например, белки, связывающиеся с актиновыми филаментами [3] и вызывающие изменения сборки и сокращения псевдоподий и образования контактных адгезий. Действительно, у некоторых таких белков присоединение фосфата резко повышено в трансформированных клетках, однако пока еще неясно, каково значение изменений каждого конкретного белка в нарушениях морфогенеза. Другой нерешенный вопрос - какие рецепторы определяют контактную регуляцию размножения нормальных клеток. Вероятное предположение состоит в том, что активация и торможение размножения зависят от тех же белков, которые прикрепляют клетку к подложке и другим клеткам, то есть от белков-рецепторов мембраны адгезионных структур, соединяющихся с белками подложки или соседних клеток. Оказалось, что адгезионные структуры с подложкой (так называемые фокальные контакты, рис. 5) содержат не только белки, необходимые для механического соединения белков матрикса через мембрану с цитоскелетом, но и несколько десятков видов других белков, функции которых неясны. Среди этих "непонятных" белков имеются различные протоонкобелки, участвующие в проведении сигналов, в том числе ферменты-киназы. Зачем они здесь? Естественно предположить, что фокальные адгезии не только механические "склейки", но и "органы осязания" клетки, передающие сигнал от соприкосновения с другой поверхностью с наружной мембраны внутрь клетки и вызывающие активацию размножения. Возможно, что рецепторы адгезий клетка-клетка, наоборот, индуцируют другие сигналы, тормозящие размножение. Все эти гипотезы сейчас активно проверяются в разных лабораториях мира. Взаимодействие системы, проводящей сигналы от мембраны, с цитоскелетом определяет ту разумную организацию движений и изменений формы клеток, тот "разум цитоскелета", о котором говорилось в предыдущей статье [4].

УНИЧТОЖАТЬ ИЛИ ИСПРАВЛЯТЬ ОПУХОЛЕВЫЕ КЛЕТКИ?
Исследования онкогенов и антионкогенов показали, что в клетке имеется сложнейшая система восприятия окружающего мира и многообразных реакций на этот мир. Мы разбирали реакции на отдельные сигналы (гормоны, контакты), но ведь на деле клетка как-то обобщает разные сигналы и реагирует на весь комплекс таких сигналов комплексом разных реакций (движениями, делением). Поведение клетки не проще, чем поведение человека, каждая реакция которого, например поездка из дома на работу, включает множество сигналов и сложных ответных действий (звон будильника, одевание, выход из квартиры, выбор автобуса нужного маршрута и т.п.). Подобно этому, после создания раны в культуре клетки оценивают целый комплекс факторов (появление свободной подложки, исчезновение контакта с другими клетками, состав жидкой среды) и дают в ответ комплекс реакций: движение в рану, включающее реорганизации цитоскелета и мембраны и почти одновременное вхождение в митотический цикл, включающее синтезы множества белков и РНК, удвоение ДНК, движения хромосом и т.д. Мы уже знаем молекулярные механизмы многих (но далеко не всех!) этапов этих реакций. Мы еще не знаем, однако, как все эти реакции интегрируются в клетке.
Как уже говорилось, биологическая суть опухолевой болезни - разрастание клонов клеток, у которых имеются мутации "генов социального поведения". Такие мутации в опухолях могут возникать последовательно, пока не появятся злокачественные клетки с целой серией мутировавших онкогенов и антионкогенов. Эти клетки реагируют не на внешние сигналы, а лишь на свои внутренние ложные сигналы, вызываемые мутантными белками. Сейчас врач может спасти больного от таких антисоциальных клеток, удалив весь клон хирургически или убив их рентгеновыми лучами и специальными веществами, которые губят делящиеся клетки. Эти методы при надлежащем искусстве врача высокоэффективны и излечивают очень многих. Однако все эти способы лечения не очень избирательны: нередко они не истребляют все опухолевые клетки или, наоборот, убивают не только опухолевые, но и нормальные делящиеся клетки (например, клетки костного мозга) и потому могут погубить организм вместе с опухолью. Кто-то удачно сравнил опухолевые клетки в организме с бандитами в человеческом обществе. Поведение бандита антисоциально, но трудно по внешнему виду отличить его от нормального человека. Столь же трудно придумать яд, который убивал бы только бандитов, но был безвреден для хороших людей.
Чем больше мы знаем о молекулярных механизмах регуляции клеток, тем больше надежда на то, что все же будут разработаны лекарства, убивающие избирательно только клетки-бандиты или, еще лучше, исправляющие поведение этих клеток. Можно представить себе несколько подходов к созданию таких "исправляющих" лекарств:
- генетическая инженерия, то есть введение в геном опухолевой клетки недостающих антионкогенов или, наоборот, разрушение онкогена. Генетики называют такое избирательное разрушение одного гена "нокаутом";
- инактивация патологической функции онкобелков, например избирательное подавление их киназной активности, то есть способности вызывать ложные сигналы путем присоединения фосфата к другим белкам.
Сейчас многие лаборатории и фармакологические фирмы ведут активную работу в этом направлении. Однако пока ни одного эффективного лекарства на основе этих подходов еще не создано.
Тем временем не надо забывать, что если не все, то многие мутации, приводящие к опухолевой трансформации, можно не только пытаться исправить, но и эффективно предотвращать. Для этого необходимо предотвратить контакты нормальных клеток организма с мутагенными агентами: лучами и химическими веществами, которые портят ДНК. Разбор действия таких агентов - задача отдельной статьи, но следует напомнить о самом распространенном мутагене, губящем ежегодно огромное число людей, - о табачном дыме. По подсчетам ученых-эпидемиологов, курение вызывает во многих странах до трети всех злокачественных опухолей. За многие годы в клетках легких у курильщика возникает целая серия мутаций онкогенов и антионкогенов. Обычно нужно накопить около десятка таких мутаций, чтобы измененная клетка дала начало злокачественному клону. Если человек перестает курить на несколько лет раньше, чем появились последние мутации, то рак не возникнет. Попытаемся сохранять наши клетки нормальными, способными правильно строить ткани и правильно вести себя в нашем организме.
Аватара пользователя
Юра Р.

 
Сообщения: 399
Зарегистрирован: 08 фев 2008, 13:37
Город: Sweden, Stockholm

Re: Симбиозы, альтруизмы и сообщества в природе

Непрочитанное сообщение Юра Р. » 08 июн 2009, 14:33

Альтруизм поневоле
Рак как генетическая программа, спасающая человечество


Человечество мечтает избавиться от рака, но не всегда осознает, какую роль этот феномен играет в эволюции животного мира. Возможно, рак является генетической программой, которая освобождает человечество от перегруженных мутациями особей. Об этом феномене, выступающем в качестве «санитара» популяции, а также о новой стратегии борьбы со злокачественными образованиями мы беседуем с заведующим лабораторией биохимии опухолей НИИ канцерогенеза Российского Онкологического научного центра им. Н.Н.Блохина РАМН, доктором биологических наук Анатолием Лихтенштейном.

– Рак принципиально отличается от других болезней тем, что это вовсе не болезнь, если понимать под ней некое отклонение от нормы. Тот факт, что рак сопряжен со страданиями и смертью, дела не меняет: старость ведь тоже сопряжена с ними, но никто на этом основании не относит ее к болезням. Есть основания полагать, что рак, как и старость, – явление нормальное и закономерное.

В последние десятилетия достигнут громадный прогресс в выяснении молекулярных механизмов рака (под раком здесь понимаются все злокачественные опухоли). В частности, идентифицированы генетические дефекты, определяющие необходимые и достаточные свойства раковой клетки. Но почему-то в их числе отсутствует ключевое, казалось бы, свойство – способность убивать «хозяина». Оно считается само собой разумеющимся следствием других признаков, составляющих опухолевый фенотип, хотя многие данные свидетельствуют о том, что раковая клетка обладает особой «киллерной» функцией.

Рак как феномен возник в эволюции в качестве механизма устранения из популяции тех особей, существование которых таит в себе некую угрозу ее генофонду. Выполняя эту важную, и, по сути, «санитарную» функцию, рак принимает форму тяжелого страдания на уровне отдельной особи. Это один из многих случаев непримиримых противоречий между интересами индивидуума и сообщества. Другой пример – апоптоз, где суицид индивидуальной клетки есть необходимое условие существования многоклеточного организма: именно так он освобождается от дефектных (мутантных) клеток и способен обновляться. Поразительный эволюционный консерватизм феномена рака есть свидетельство его «позитивности», то есть выполнения им неких важных функций. Особенно явным это становится при рассмотрении так называемого «парадокса Пето».

– В чем он заключается?

– Свыше 50 лет назад было сформулировано одно из основных положений фундаментальной онкологии – о многостадийности канцерогенеза. Математический анализ статистики заболеваемости раком в зависимости от возраста показал, что трансформируемая клетка проходит последовательно несколько стадий (сегодня понятно, что они обусловлены накоплением в ДНК мутаций, вызывающих необратимые изменения генотипа клетки и соответственно фенотипа). Очевидно, что, чем больше стадий необходимо для трансформации клетки, тем выше ее противораковая защита.

Факт многостадийности канцерогенеза показывает, насколько мала вероятность превращения нормальной клетки в раковую: мутации, события сами по себе крайне редкие, должны поразить очень малую мишень несколько раз, последовательно накапливаясь в геноме одной клетки. Вместе с тем человек болеет раком часто (вероятность заболевания на протяжении жизни составляет около 20%, в возрасте 60-80 лет – до 30-40%). Такое несоответствие объясняется большим числом пролиферирующих клеток в его организме и большой продолжительностью жизни. Следуя этой логике, можно, казалось бы, предположить, что мыши, с их тысячекратно меньшей, чем у человека массой и небольшой продолжительностью жизни, не должны болеть раком вовсе, тогда как голубые киты, с их тысячекратно большей массой, должны вымереть, как вид, поскольку заболевать должны еще в утробе матери. На самом деле нет ни того, ни другого: и мыши болеют, и киты не вымирают. Такое несоответствие реальности и теории называют парадоксом Пето.

Парадокс объясняется тем, что трансформационная резистентность клетки (то есть степень ее защиты от превращения в раковую), не фиксирована жестко, а, напротив, весьма подвижна, изменчива, и подвержена эволюционной адаптации. Клетки разных видов существенно различаются в этом отношении. Из парадокса Пето следуют три вывода: во-первых, пути, ведущие к раку, у разных клеток различны; во-вторых, данные, полученные на экспериментальных моделях, нельзя без поправок переносить на человека; в-третьих, противораковая защита клеток разных видов и тканей варьирует в широких пределах. Если бы рак оказывал неблагоприятное воздействие на жизнеспособность вида, то отбор, несомненно, отсеял бы такой признак. Мы же видим, что эволюция не только не устраняет этот феномен, но, напротив, держится за него так цепко, как можно держаться только за жизненно необходимое.

– Расскажите, пожалуйста, о «киллерной» функции раковой клетки.

– Хотя у каждой из сотни разновидностей рака есть свои особенности, ход заболевания и его конечный результат в целом неизменны. Раковой клетке помимо канонического набора свойств присуща, по-видимому, и особая, «киллерная» функция, направленная против организма в целом. Именно эта функция, которая играет определяющую роль в клинике онкологического заболевания, по всей вероятности, осуществляет ту миссию, для выполнения которой возникла в эволюции программируемая гибель организма. С такой точки зрения все остальные приобретенные свойства раковой клетки играют лишь вспомогательную по отношению к ней роль, увеличивая число клеток – «киллеров» и создавая условия для их распространения по организму.

«Киллерная» функция раковой клетки – особое свойство, не сводимое к другим, таким, как нерегулируемое размножение или метастазирование. В самом деле, маловероятно, что активная пролиферация раковых клеток была бы губительна сама по себе, поскольку в организме взрослого человека ежесуточно делятся десятки миллиардов клеток, восполняя убыль погибших, что многократно превышает пролиферативный пул сколь угодно большой опухоли. И даже метастазы не объясняют гибели организма (исключение составляют немногие ситуации, когда роковую роль играет сама локализация опухолевого очага). В большинстве случаев в клинике онкологического заболевания ведущее значение имеют общие, а не местные проявления опухолевого роста.

«Киллерная» функция – свойство универсальное: летальный исход в отсутствие лечения неизбежен независимо от типа опухоли и ее локализации, способности рецидивировать и метастазировать, влиять на различные биохимические показатели. И, наконец, она специфична для раковой клетки, поскольку в нормальной клеточной физиологии нет примеров проявления подобной активности (почти все иные свойства, присущие раковой клетке, отмечаются и у нормальных клеток на тех или иных стадиях развития, в частности, у стволовых клеток).

Канцерогенез – дарвиновский эволюционный процесс селекции и ступенчатого накопления в соматической клетке мутаций и эпимутаций, способствующих экспансии соответствующего клона. Однако «киллерная» функция принципиально отличается от всех остальных свойств тем, что не дает раковой клетке селективных преимуществ. Напротив, ее реализация уравнивает в правах все клетки организма, поскольку ведет к их общей катастрофе. В этой особенности (отсутствие селективных преимуществ и саморазрушительный характер) кроется принципиальное сходство «киллерной» функции и апоптоза. Сходство этих программ – в альтруистическом характере, а различия – в направленности действия (против самой себя у апоптотической клетки и против «хозяина» – у клетки раковой).

– Анатолий Владимирович, выходит, что рак востребован эволюцией и является альтруистической программой, направленной на то, чтобы освободить популяцию от генетически ущербной особи?

– Да, на мой взгляд это действительно так. Рак чаще всего является локальным проявлением генерализованного мутагенеза, хотя многие придерживаются иной точки зрения. Дело в том, что опухоль имеет клональное происхождение, то есть, является потомством одной трансформированной клетки. Это обстоятельство, а также тот факт, что у большинства больных возникает только одна опухоль, формируют представление о канцерогенезе как о сугубо локальном процессе, возникающем там, где клетки контактируют с канцерогенами. Опыты с воздействием химических канцерогенов на кожу экспериментальных животных и случаи профессионального рака наглядно демонстрируют связь между местом воздействия и локализацией опухолевого очага и тем самым способствуют утверждению данного положения.

Ситуация, однако, намного сложнее. Еще недавно считали, что главным источником мутагенеза является внешняя среда организма (многочисленные химические, физические и биологические агенты), иначе говоря, известные факторы риска – вредные привычки, условия труда и так далее. Но в последнее время стало преобладать мнение о том, что столь же существенный, если не наибольший вклад в общий мутагенез вносят факторы внутренней среды организма. Мутагенез обусловлен метаболизмом клетки, поэтому он вездесущ, затрагивает все клетки и нарастает с возрастом. Отсюда можно сделать следующие выводы: так как мутагенез прогрессирует и никогда не поворачивает вспять, то появление полностью трансформированной клетки – лишь вопрос времени. Рано или поздно, но она возникнет. Во-вторых, расчеты показывают, что к моменту появления опухоли организм, как правило, наводнен дефектными клетками, имеющими, по крайней мере, одну мутацию в одном из «раково-ассоциированных генов». О том же свидетельствует клинический опыт: раку всегда предшествуют предраковые изменения, захватывающие обширные участки окружающих опухоль тканей. В-третьих, существует очевидная положительная корреляция между числом мутаций в клетке – родоначальнице опухоли, и числом мутантных клеток в организме. Похоже, что опухоль возникает тогда, когда некого критического порога достигает генетическая «инвалидизация» всего организма (имеются в виду как соматические, так и половые его клетки). Если женские половые клетки мутируют примерно с той же скоростью, что и соматические, то мужские половые клетки, в силу их структурных и функциональных особенностей, мутабельны чрезвычайно.

Словом, есть основания полагать, что рак возникает на «продвинутой» стадии мутагенеза, когда дефектны многие клетки организма, включая половые. И становится понятным, с каким именно риском связано присутствие такой особи в популяции. Угроза эта не «горизонтальна», то есть не распространяется на современников, так как рак не передается от человека к человеку, а «вертикальна» и затрагивает генофонд популяции (имеется в виду риск рождения генетически дефектного потомства). Рак в данной ситуации – барьер для распространения дефектных генов.

Порой мне задают вопрос: «Что было бы, если бы трансформационная резистентность клеток оказалась намного выше существующей, и рак бы исчез?» Думаю, что хотя рак – это и очень плохо для отдельного индивидуума, но без него популяции было бы много хуже. Математическое моделирование предсказывает, что в отсутствие рака частота дефектных генов в популяции стала бы нарастать, а это привело бы к падению жизнеспособности и распространению других, не связанных с раком, болезней. Например, мутантный аллель гена p53, называемого главным «защитником» генома, сегодня встречается крайне редко, поскольку он вызывает наследственный синдром Ли-Фраумени и почти стопроцентную вероятность смерти в молодом возрасте от множественных опухолей. В отсутствие рака ничто бы не мешало свободному распространению такого генного варианта. Это относится и к другим генам, наследственные дефекты которых сопряжены с «раковыми» синдромами.

Теоретические представления подтверждаются данными популяционной генетики. Онкологические заболевания, как известно, имеют во многих случаях наследственную природу. Существуют аллели с высокой, средней и низкой степенью предрасположенности к злокачественному новообразованию: чем выше предрасположенность, тем меньше существует особей с данным генетическим вариантом. Этот факт, несомненно, свидетельствует санитарной функции рака.

Если принять гипотезу, что он возник в эволюции как способ защиты генофонда популяции, то следует признать, что этот механизм функционирует с избыточной активностью, выходящей за пределы первоначальных задач. И высокая заболеваемость в старости, и множество случаев рака при локальном воздействии – свидетельства такой «сверхреактивности», затушевывающие истинную, на наш взгляд, природу этого явления. Рак, как и апоптоз, действует превентивно, по принципу « лучше уничтожить тысячу невинных, чем пропустить одного виновного». По-видимому, с эволюционной точки зрения генетическая стабильность популяции оказывается важнее неисчислимых индивидуальных потерь.

– Но можно ли в связи с этим одержать победу над раком?

– Взгляд на феномен рака, как на природой придуманный инструмент, порождает зачастую глубокий пессимизм в отношении возможности избавления от него.

В 70-е годы президент США Р.Никсон объявил войну со злокачественными образованиями, и государство потратило на это свыше 200 млрд долл. А успехи – относительны. Смертность от основных форм рака осталась примерно на том же уровне, на каком и была 30 лет назад. Поэтому сегодня все больше говорят о новой, профилактической стратегии борьбы с опухолями, о необходимости вести ее на «дальних подступах», то есть, о попытках замедлить рост мутационной пирамиды и тем самым «вытеснить» рак за пределы человеческой жизни. Сторонники профилактического направления настаивают на том, что борьба с уже возникшей опухолью так же запоздала, как и борьба с параличом после уже произошедшего инсульта.

В настоящее время научное сообщество готово ставить перед собой очередную амбициозную цель. Если вчера таковой была расшифровка генома человека, то сегодня – победа над раком к 2015 году. И с этой точки зрения особый интерес может представлять выяснение механизма «киллерной» функции раковой клетки. Это позволило бы выявить новую мишень терапевтических воздействий, притом специфическую именно для опухоли, и, следовательно, не вызывающую при ее поражении побочных эффектов (этой «ахиллесовой пяты» современной химиотерапии). Лечение рака основывается сегодня на императиве уничтожения опухолевой клетки. Нейтрализовать ее, то есть блокировать пути ее гибельного воздействия на нормальные ткани – вот возможная альтернативная стратегия.
Аватара пользователя
Юра Р.

 
Сообщения: 399
Зарегистрирован: 08 фев 2008, 13:37
Город: Sweden, Stockholm

Re: Симбиозы, альтруизмы и сообщества в природе

Непрочитанное сообщение Юра Р. » 08 июн 2009, 14:48

В человеке живет килограмм микробов, и без них ему не выжить

Еще недавно симбиоз считался сравнительно редким явлением в природе, скорее курьезом, чем правилом. Но в последние десятилетия ученые пришли к выводу, что симбиотические комплексы являются основой многих экосистем Земли и многих живых организмов, и именно они в значительной степени определяют круговорот веществ и энергии.

О роли симбиозов в структуре биосферы рассказывает доктор биологических наук Александр Марков:

— Александр, мы уже говорили о том, что основные этапы эволюции происходили с участием симбиоза . Давайте сегодня остановимся на роли симбиоза в формировании экосистем.

— Действительно, симбиозы лежат в основе всех важнейших экосистем и основных блоков круговорота глобального вещества и энергии. Это относится и к морским, и к наземным экосистемам, и к животным, и к растениям, и к позвоночным, и к беспозвоночным. Чтобы в огромном многообразии симбиотических систем разобраться, мы их условно поделим на группы, хотя это не научная классификация, но так будет проще разобраться во всем многообразии.

Я воспользуюсь классификацией, которая предложена в обзорной статье Проворова и Долгих по системам симбиоза, недавно опубликованной в журнале «Общая биология».

Были выделены такие группы: симбиозы между азотофиксирующие растениями и азотофиксирующими бактериями; симбиозы производителей органических веществ и их потребителей; симбиозы животных с микроорганизмами, которые помогают переваривать растительную пищу; симбиозы с участием различных вирусов и мобильных генетических элементов; наконец, остается огромная группа «разное», в нее включаются самые разные симбиозы, которые ни в какую классификацию не помещаются, которые возникают благодаря объединению самых разных и неожиданных интересов и потребностей разных видов.

— Давайте начнем с такого примера как жвачные животные. Они, как и люди, относятся к симбиозу животных с микроорганизмами, которые помогают переваривать растительную пищу.

— Что такое животные с точки зрения биосферы и баланса биосферного круговорота? Это — прежде всего потребители растительной пищи. Растения производят органику из углекислого газа, а животные поедают эту органику, переваривают и возвращают в углерод в виде углекислого газа, то есть они замыкают вот этот цикл вместе с растениями.

Главная экологическая роль животных поедать растения. Но парадокс заключается в том, что животные практически не могут переваривать растительную пищу. И они справляются с этой задачей, исключительно благодаря симбиозу с разнообразными микроорганизмами, которые живут в кишечнике животных. Собственно, именно микроорганизмы и переваривают вот эту трудноусваиваемую растительную пищу. Если говорить о человеке, то в каждом из нас занимается этой работой порядка килограмма микробов.

У коровы их, конечно, гораздо больше. У нее есть специальный отдел желудка — рубец жвачных, специально служащий инкубатором для микроорганизмов. У коровы ситуация гораздо сложнее, чем у человека, потому что корова питается той самой растительной пищей, которая не переваривается животными, она — питается травой. А человек все-таки употребляет легкоусваиваемую животную пищу, например, сочные плоды. Но если бы животные могли питаться только другими животными или сочными плодами и семенами, то животный мир был бы несравненно меньше, беднее и не играл бы такой заметной роли в биосфере. Он был бы довольно жалким.

А у бактерий репертуар ферментов гораздо шире, чем у нас с вами. Сегодня стало модно говорить, что человек — как и все животные — на самом деле не единый организм, а сверхорганизм. Потому обмен веществ человека определяется не только человеческими генами, но и генами тех микробов, которые живут с нами в симбиозе. Это не только гены ферментов, переваривающих те вещества, которые мы сами не можем переварить, но это еще и гены белков, которые синтезируют различные витамины, незаменимые аминокислоты, те компоненты, которых может не хватать в пище — их для нас синтезируют те же микробы, чем очень сильно нам облегчают жизнь и укрепляют здоровье.

— Удивительно, насколько изменился наш взгляд на микроорганизмы. В начале XX века, многие люди боялись любых микробов. А оказывается, многие их виды помогают нам выживать.

— В начале XX века один действительно замечательный ученый, нобелевский лауреат, предлагал просто удалять прямую кишку при рождении, потому что в ней очень много микробов. А в ней как раз происходит сбраживание углеводов и синтез витаминов.

— О каких ярких примерах симбиозов стоит еще рассказать?

— Поразительные вещи сегодня открывают в связи с насекомыми. Насекомые очень важная группа животного мира, гораздо более многочисленная и многообразная, чем, скажем, позвоночные, и они тоже питаются растениями. Есть хищные формы насекомых, но основная масса питается растительной пищей, в том числе многие насекомые питаются чистыми растительными соками. А что такое сок растения? Это чуть подслащенная водичка и все, там кроме углеродов фактически ничего нет, это немногим лучше, чем грызть химически чистую целлюлозу, как это делают термиты. Тля и многие клопы просто высасывают сок у растений. И у всех таких насекомых есть симбиотические бактерии, которые живут обычно внутри клеток. У многих насекомых есть специальные органы бактериосомы, и в них специальные клетки бактериоциты, в которых живут эти бактерии.

Недавно был исследован симбиоз клопов, которые питаются соками растений, и бактерий. У этих клопов кишка является инкубатором для бактерий. Она пережимается, сок, который они всасывают, не может пройти насквозь, и бактерии, которые живут в бывшей средней кишке, синтезируют все недостающее для этого клопа элементы. И что самое интересное — самка обеспечивает свое потомство этими бесценными бактериями. Она откладывает яйца и в каждую кладку обязательно откладывает так называемые симбиотические капсулы — это специальные упаковочки с бактериями. Когда потомства вылупляется из яйца, первым делом оно ищет эти капсулы и их съедает.

— Какие симбиозы существует в море?

— Самые яркие и впечатляющие морские экосистемы – это коралловые рифы. И они тоже основаны на симбиозе, потому что коралловые полипы — это симбиотические сверхорганизмы: это кишечнополостный полип, в его тканях живут симбиотические водоросли. В тропиках, где живут коралловые полипы, в воде очень мало зоопланктона, которым могут питаться сами полипы, и поэтому они фактически используют для питания фотосинтез: они питаются той органикой, которую производят их симбиотические водоросли. Сегодня из-за изменений климата вода нагревается выше критического уровня — выше 30 градусов, — это приводит к тому, что симбиотические водоросли гибнут. Это называется выбеливанием кораллов. А следом за водорослями гибнут и сами коралловые рифы.

— Как используют синтез растения?

— Очень важный пример – это наземные растения. Все они замечательно приспособлены для того, чтобы производить органику: листья, стебли, замечательные системы размножения, цветы – это великолепное произведение эволюции. Но у растений есть одно слабое место– они не умеют переводить атмосферный азот в удобоваримое для себя состояние.

Усваивание азота — это очень сложная и энергоемкая задача, но жизнь сумела ее решить. Это умеют делать только прокариоты — некоторые бактерии. А высшие организмы этого делать не умеют. Тот способ, которым пользуются бактерии, требует отсутствия кислорода. Природе не удалось создать такой способ работы с азотом, который бы шел в кислородных условиях.

Доступного азота не хватает в почве, он там есть в виде отмерших органических веществ, но растения не могут из них извлечь азот, потому что у них нет пищеварительных ферментов, чтобы эту органику разложить.

Как же была решена проблема? Опять же при помощи симбиоза с азотфиксирующими бактериями. Этот симбиоз замечательно развит у очень многих высших растений, а другие могут пользоваться плодами их трудов. Причем интеграция между азотфиксирующими бактериями и растениями достигла потрясающей степени. У растений, например, у бобовых на корнях образуются специальные органы — клубеньки, в середине которых развиваются азотфиксирующие бактерии ризобии. И там настолько все связано, что растительные клетки, составляющие этот клубенек, специально заботятся, чтобы в середину клубенька не попал кислород, они убирают кислород оттуда, чтобы создать условия для развития ризобий. Растения и бактерии обмениваются химическими сигналами, и доходит даже до того, что работа некоторых растительных генов, управляется бактериальными белками-регуляторными.

Бактерии отдают команды растению, но и растения посылают управляющие сигналы бактериям. Фактически эта симбиотическая система работает, как единый организм.
Аватара пользователя
Юра Р.

 
Сообщения: 399
Зарегистрирован: 08 фев 2008, 13:37
Город: Sweden, Stockholm

Re: Симбиозы, альтруизмы и сообщества в природе

Непрочитанное сообщение Юра Р. » 08 июн 2009, 15:01

ГЕНЕТИЧЕСКИ ЗАПРОГРАММИРОВАННАЯ СМЕРТЬ КЛЕТКИ

Вадим Израилевич Агол, доктор биологических наук,
профессор кафедры вирусологии Московского государственного университета им. М.В. Ломоносова,
член-корреспондент Российской Академии медицинских наук,
зав. лабораторией биохимии Института полиомиелита и вирусных энцефалитов им. М.П. Чумакова.
Автор более 200 научных работ и 3 монографий.

Организмы разных людей имеют более или менее одинаковое число клеток. Колебания есть, но они относительно невелики. Если сравним число клеток в каком-нибудь органе у здоровых взрослых людей, то также получим схожие числа. Когда же, например, анализ крови показывает изменение числа клеток, врач начинает беспокоиться. Есть животные, у которых число клеток вообще не колеблется, даже в узких пределах. У очень мелкого, длиной около миллиметра, червячка Caenorhabditis elegans ровно 945 клеток; из них нервных 302, ни больше, ни меньше.
Как поддерживается такое постоянство? Одна группа механизмов достаточно очевидна. Клетка может разделиться на две дочерние, а может и не делиться. Какая из этих возможностей реализуется, зависит как от генетической программы, так и от внешних сигналов, которые клетка получает от своих соседей или из окружающей среды. Но существует и другой механизм, привлекший внимание ученых лишь в последние годы. Оказывается, наряду с программой, регулирующей клеточное деление, есть особая генетическая программа, реализация которой при определенных условиях приводит клетку к гибели. Гибнет клетка не от руки какого-нибудь постороннего убийцы (хотя бывает и так), она сама приносит себя в жертву во имя блага организма. Вот об этом самопожертвовании клеток и пойдет речь.
Прежде всего о самом биологическом явлении - программируемой клеточной смерти. У червяка, о котором я упоминал, в результате клеточных делений на самом деле образуется не 945, а 1076 клеток, но 131 из них обязательно гибнет. При формировании некоторых органов человека и животных также первоначально возникает намного больше клеток, чем потом потребуется. Например, так бывает при развитии нервной системы. Лишние клетки в свое время мирно погибнут. Мирно - значит, без воспаления. Клетка сморщивается и постепенно распадается на обломки, которые обычно поедаются макрофагами - специальными клетками, у которых хороший аппетит. Но как узнать, какая клетка лишняя, а какая нет? Какая из двух клеток, рожденных действительно равными (а генетически две сестринские клетки идентичны), должна умереть, обеспечив тем самым продолжение жизни своей сестры?
Ситуации бывают разные. У Caenorhabditis elegans судьба клетки определена абсолютно жестко, и поменять эту судьбу у здоровой особи практически невозможно; есть клетки (те самые 131), у которых, можно сказать, "на роду написано" покончить жизнь самоубийством. В других случаях задача решается не столь однозначно. Например, при развитии организма млекопитающих те нервные клетки, которые не успевают установить контакты - синапсы - между собой или с иннервируемыми органами, и есть лишние. Их существование не имеет смысла. Для клеток других тканей сигнал к включению программы смерти может быть иным, но биологический смысл самопожертвования можно найти всегда.
Самопожертвование осуществляется по определенному ритуалу при участии ряда факторов, многие из которых еще не известны науке. Схематически смертоносный сценарий можно разбить на несколько основных этапов. На первом этапе клетка получает "послание" о том, что она должна пожертвовать своей жизнью для благополучия организма. Это известие приходит из окружающей среды - либо от соседних клеток, либо от межклеточных веществ, твердых или жидких. Чтобы воспринять такое "послание", клетки имеют специальные органы чувств, которые называют рецепторами (от латинского recipere - получать). Рецепторы представляют собой белковую молекулу, обычно состоящую из трех частей: внеклеточной, внутриклеточной и промежуточной, пронизывающей клеточную мембрану. Наружная часть рецептора способна узнавать молекулы строго определенного строения, которые могут либо свободно плавать во внеклеточной жидкости, либо быть фиксированными на поверхности других клеток или межклеточных волокон. Сигнальные молекулы и рецепторы подходят друг к другу, как ключ к замку. Информация передается через различные рецепторы или сочетание рецепторов. Информацией может являться и отсутствие специфического вещества в окружающей клетку среде. Хорошо известно, что в некоторых случаях молчащий телефон говорит очень о многом.
В результате контакта сигнальных молекул с наружной частью белка-рецептора этот рецептор претерпевает структурные изменения: некоторые атомы меняют положение относительно других атомов. Структурная перестройка захватывает и внутриклеточную часть молекулы рецептора. Она может либо обладать определенной ферментативной активностью сама, либо быть тесно связана с некоторыми клеточными ферментами. Изменение структуры рецептора сказывается на работе этих ферментов, поэтому в результате контакта рецептора с внеклеточным веществом внутри клетки происходят разные биохимические изменения. Часто речь идет об изменении концентрации ионов кальция, а также некоторых относительно мелких фосфорсодержащих органических соединений, относящихся к классу нуклеотидов. Активные соединения появляются и в результате гидролиза определенных липидов клеточной мембраны. В свою очередь, все это ведет к присоединению или отсоединению остатков фосфата от молекул белковых регуляторов, способных влиять на генетический аппарат клетки. Фосфорилирование и дефосфорилирование, а также некоторые другие биохимические модификации меняют активность этих регуляторов.
Во втором действии драмы внутриклеточные регуляторы-посланники, получив важные инструкции, вносят поправки в работу отдельных генов. Работа эта, как известно, заключается в образовании РНК, а затем и белков. Таким образом, в результате срабатывания генетической программы, первоначально запущенной сигналом с рецептора, происходит изменение набора внутриклеточных РНК и белков. В конечном счете появляются или активируются ферменты, способные разрушать клеточные белки и нуклеиновые кислоты, их называют протеазами (протеин - белок) и нуклеазами. В заключительном акте клетка теряет свою целостность и становится пищей для макрофагов. Морфологические и биохимические изменения в клетках-самоубийцах весьма схожи, даже если это клетки разных органов и разных организмов. Хроматин, главный внутриядерный компонент, содержащий ДНК и белки, уплотняется, а само ядро в конечном счете распадается на мелкие фрагменты (рис. 1). Вся клетка также также дробится на отдельные кусочки (рис. 2). Этот комплекс изменений, характерный для программируемой гибели клеток, часто обозначают термином апоптоз, что в переводе с греческого означает "опадание листьев".
Программа, принимающая крайне ответственное и иногда непоправимое решение - жить или не жить, - должна быть предельно осмотрительной, поэтому клетка старается сделать все, чтобы не ошибиться. Перед вынесением окончательного приговора (активирование разрушающих клетку ферментов) сигналы, получаемые извне, подвергаются всестороннему анализу. Этот анализ начинается уже на уровне первичных сигналов, получаемых клеткой. Так, в ткани, в которой идет интенсивное клеточное деление, обычно находятся разнообразные белковые вещества, называемые факторами роста. Эти факторы стимулируют деление. Их отсутствие является либо указанием на то, что потребность в "молодых" клетках уже удовлетворена, либо серьезным сигналом неблагополучия. Разные факторы роста взаимодействуют с разными рецепторами, и клетка часто ориентируется на информацию, получаемую одновременно с нескольких рецепторов.

Анализ этой информации внутри клетки происходит при участии многих белков. В последнее время открыты белки как способствующие, так и препятствующие развитию апоптоза. Эти белки как бы напоминают штат нескольких инстанций судебных коллегий, которые могут либо одобрить смертный приговор, либо его отменить или приостановить исполнение. Хотя мы не знаем, в чем конкретно заключается процесс принятия решения, известно, что характер этого решения часто зависит от относительной концентрации определенных белков-регуляторов. Некоторые из этих белков - "ястребы" - обычно "голосуют" за смертный приговор, другие - "голуби" - за помилование. В ряде случаев решение принимается простым большинством голосов. Например, это может происходить следующим образом (рис 3). Есть такой белок Bax, молекулы которого имеют сродство друг к другу и образуют димеры. Повышенное содержание белка Bax способствует развитию апоптоза. Другой белок - Bcl-2 также умеет формировать димеры, но он может также присоединиться и к белку Bax, образуя при этом Bax/Bcl-2 гетеродимеры. В результате происходит нейтрализация апоптозной активности белка Bax. Таким образом, при прочих равных условиях преобладание белка Bax будет способствовать гибели клетки (при наличии соответствующего сигнала), а при преобладании белка Bcl-2, наоборот, клетка с большей вероятностью будет защищена от гибели.

Интересно, что некоторые из генов, контролирующих апоптозную реакцию у людей, являются очень древними. Например, ген человека, направляющий синтез белка Bcl-2, имеет структурное сходство с геном Caenorhabditis elegans, в котором закодирован антиапоптозный белок Ced-9. При нарушении функции белка Ced-9 гибнет не 131 клетка, как в норме, а большее их число. В специальных опытах было показано, что в определенных пределах белки Bcl-2 и Ced-9 взаимозаменяемы. Есть и другие примеры родственных связей между участниками систем, контролирующих апоптоз у людей и червей. Так, некоторые из протеаз человека, принимающих участие в финале апоптозной драмы, - родственники другого белка (Ced-3) Caenorhabditis elegans.
Но в общем эта система у млекопитающих все же значительно сложнее и включает большее число компонентов.

Вообще "бюрократический" аппарат наших клеток, несмотря на их микроскопические размеры, огромен; в том числе "раздут" штат и в "департаменте", который занимается апоптозом. Но это излишество только кажущееся. Ведь тот же департамент отвечает и за контроль над клеточным делением. Некоторые белки одновременно "присматривают" и за апоптозом, и за делением клетки. Таким образом, системы регуляции клеточного деления и клеточной смерти оказываются тесно переплетенными между собой. Это обстоятельство имеет очень важные биологические последствия. Одно из них заключается в том, что апоптоз - мощное и важнейшее средство естественной профилактики раковых и других злокачественных новообразований. Есть специальные гены, которые так и называются - анти-онкогены. Среди них важное место занимает ген, кодирующий белок с маловыразительным названием р53 (название характеризует массу этого белка в килодальтонах). Белок р53 внимательно "следит" за работой генов, способных вызвать несвоевременное деление клетки, и вообще за неполадками в ДНК - генетическом материале клетки. В случае необходимости р53 сдвигает равновесие в пользу апоптоза и потенциально опасная клетка гибнет. Если же "заболевает" (мутирует) сам р53, то система регуляции клеточного деления остается без должного присмотра.
Все это не просто абстрактные рассуждения: в клетках злокачественных новообразований человека нередко обнаруживают мутации в белке р53, нарушающие его работоспособность. Без присмотра нарушается дисциплина, и вместо того, чтобы погибнуть, клетка начинает бесконтрольно делиться. Возникает опухоль. Если же р53 нормален, система программируемой клеточной смерти резко снижает частоту раковых заболеваний. Сходным образом эта система следит и за некоторыми другими неполадками в работе генетического аппарата. Значительно легче своевременно устранить потенциально опасную клетку, чем потом бороться с ее многочисленным непослушным потомством.
С другой стороны, многие противораковые лекарства обладают лечебным действием именно потому, что способны вызывать апоптоз в раковых клетках. Эти лекарства часто воздействуют на генетический аппарат делящихся клеток, вызывая нарушения в его работе. А как мы уже знаем, клеточные белки, в частности р53, реагируют на такие нарушения включением апоптозной системы. В то же время, при лечении противораковыми препаратами нередко возникает устойчивость к этим препаратам - одна из главных причин недостаточной эффективности химиотерапии злокачественных опухолей. Эта устойчивость имеет в разных случаях разную природу, но одна из причин - нарушение работы апоптозной системы. Клетка как бы отказывается жертвовать собой во имя общего блага несмотря на полученные инструкции. Кончается такой "эгоизм" скверно. Лучевая терапия раковых заболеваний также основана на способности облучения вызывать апоптоз (при участии р53) прежде всего в активно делящихся клетках.
Нарушение физиологического равновесия между делением и гибелью клеток лежит в основе и некоторых других - неопухолевых - заболеваний. В частности, есть основания считать, что при СПИДе (синдроме приобретенного иммунодефицита) уменьшение содержания в крови определенного класса лейкоцитов, играющих важную роль в иммунитете, обусловлено их апоптозной гибелью. В основе некоторых других дегенеративных заболеваний также, возможно, лежит нарушение функции апоптозной системы.
Большую роль играет апоптоз и в защите организма от возбудителей инфекционных заболеваний, в частности, от вирусов. Многие вирусы вызывают такие глубокие нарушения в обмене веществ зараженной клетки, что она воспринимает эти нарушения как сигнал к экстренному включению программы гибели. Биологический смысл такой реакции вполне понятен. Смерть зараженной клетки еще до того, как в ней образуется новое поколение вирусных частиц, предотвратит распространение инфекции по организму. Однако у некоторых вирусов выработались специальные приспособления, направленные на подавление апоптоза в заражаемых клетках. Тут могут использоваться разные средства. В одних случаях в вирусном генетическом материале закодированы вещества, которые и по строению, и по функции очень похожи на клеточные антиапоптозные белки-регуляторы (такие как, например, уже упоминавшийся Bcl-2 или белки, подавляющие активность протеаз). В других - вирус на правах оккупанта насильственно стимулирует синтез клеткой ее собственных анти-апоптозных белков. Так или иначе, создаются предпосылки для беспрепятственного размножения вируса.

Подведем некоторые итоги. В генетическом аппарате каждой клетки многоклеточного организма имеется специальная программа, которая при определенных обстоятельствах может привести клетку к гибели. При нормальном развитии эта программа направлена на удаление избыточно образовавшихся клеток-"безработных", а также клеток-"пенсионеров", переставших заниматься общественно полезным трудом. Другая важная функция клеточной гибели - удаление клеток-"инвалидов" и клеток-"диссидентов" с серьезными нарушениями структуры или функции генетического аппарата. В частности, апоптоз - один из основных механизмов самопрофилактики онкологических заболеваний.
Система программируемой клеточной смерти - существенный фактор иммунитета, поскольку гибель зараженной клетки может предотвратить распространение инфекции по организму. Другое дело, что некоторые инфекционные агенты выработали специальные меры для предотвращения преждевременной гибели зараженных клеток. Нарушения системы программируемой гибели клетки - причина серьезной патологии. Ослабление способности к апоптозу может вести к развитию злокачественных опухолей. Некоторые заболевания, в частности дегенеративные повреждения нервной системы, - результат избыточного апоптоза.
Воздействие на программу клеточной гибели - перспективное направление лекарственного лечения. Так, одна из важных задач противораковой терапии - стимуляция апоптозной системы. В других случаях задача врача, наоборот, предотвратить вредное для организма клеточное самоубийство.
Таким образом, какие-то компоненты каждой клетки по праву могли бы нести микроскопическое изображение черепа со скрещенными костями. Однако следует признать, что наличие такого смертельного механизма - обстоятельство не только необходимое, но в конечном итоге крайне благоприятное. Без системы программируемой клеточной гибели мы с вами не могли бы появиться на свет такими, какими мы рождаемся. И поддержание порядка в наших организмах в течение дальнейшей жизни в значительной степени обеспечивается именно способностью наших клеток к программируемой смерти.
Аватара пользователя
Юра Р.

 
Сообщения: 399
Зарегистрирован: 08 фев 2008, 13:37
Город: Sweden, Stockholm


Вернуться в Общение

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 0